scholarly journals Multi-Objective Optimization Design of Corrugated Steel Sandwich Panel for Impact Resistance

Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1378
Author(s):  
Li Ke ◽  
Kun Liu ◽  
Guangming Wu ◽  
Zili Wang ◽  
Peng Wang

The application of corrugated steel sandwich panels on ships requires excellent structural performance in impact resistance, which is often achieved by increasing the weight without giving full play to the characteristics of the structure. Considering the mechanical properties of sandwich panels under static and impact loading, a multi-objective optimal method based on a back-propagation (BP) neural network and a genetic algorithm developed in MATLAB is proposed herein. The evaluation criteria for this method included structural mass, static and dynamic stress, static and dynamic deformation, and energy absorption. Before optimization, representative sample points were obtained through numerical simulation calculations. Then, the functional relationship between the design and output variables was generated using the BP neural network. Finally, a standard genetic algorithm (SGA) and an adaptive genetic algorithm (AGA) were used for multi-objective optimization analysis with the established function to obtain the best result. Through this study, a new design concept with high efficiency and reliability was developed to determine the structural parameters that provide the best impact resistance using limited sample points.

2013 ◽  
Vol 694-697 ◽  
pp. 2850-2855
Author(s):  
Ting Fang Yu ◽  
Xia Wang ◽  
Chun Hua Peng

This paper discussed application of modified non-dominated sorting genetic algorithm-II (MNSGA-II) to multi-objective optimization of a coal-fired boiler combustion, the two objectives considered are minimization of overall heat loss and NOx emissions from coal-fired boiler. In the first step, BP neural network was proposed to establish a mathematical model predicting the NOx emissions & overall heat loss from the boiler. Then, BP model and the non-dominated sorting genetic algorithm II (NSGA-II) were combined to gain the optimal operating parameters. According to the problems such as premature convergence and uneven distribution of Pareto solutions exist in the application of NSGA-II, corresponding improvements in the crowded-comparison operator and crossover operator were performed. The optimal results show that MNSGA-II can be a good tool to solve the problem of multi-objective optimization of a coal-fired combustion, which can reduce NOx emissions and overall heat loss effectively for the coal-fired boiler. Compared with NSGA-II, the Pareto set obtained by the MNSGA-II shows a better distribution and better quality.


2014 ◽  
Vol 989-994 ◽  
pp. 3968-3972
Author(s):  
Xue Xiao ◽  
Qing Hong Wu ◽  
Ying Zhang

The genetic algorithm is a randomized search method for a class of reference biological evolution of the law evolved, with global implicit parallelism inherent and better optimization. This paper presents an adaptive genetic algorithm to optimize the use of BP neural network method, namely the structure of weights and thresholds to optimize BP neural network to achieve the recognition of banknotes oriented. Experimental results show that after using genetic algorithms to optimize BP neural network controller can accurately and quickly achieved recognition effect on banknote recognition accuracy compared to traditional BP neural network has been greatly improved, improved network adaptive capacity and generalization ability.


Sign in / Sign up

Export Citation Format

Share Document