Distributed Power Generation and Energy Storage From Renewables Using a Hydrogen Oxygen Turbine

Author(s):  
Susan Schoenung ◽  
Jay Keller

Renewable energy is best utilized when partnered with energy storage to balance the variable supply with daily and seasonal grid demands. At the distribution level, in addition to meeting power demands, there is a need to maintain system voltage and reactive power / VAR control. Rotating machinery is most effective for VAR control at the substation level. This paper presents a patented MW-scale system that provides power from a hydrogen-oxygen-fueled combined cycle power plant, where the hydrogen and oxygen are generated from electrolysis using renewable wind or solar power. The steam generated from combustion is the working fluid for the power plant, in a closed loop system. Also presented is a discussion on a patented strategy for safe combustion and handling of hydrogen and oxygen, as well as how to use this combustion strategy for flame and post flame temperature control. Finally, a preliminary benefits analysis illustrates the various energy storage and distributed generation benefits that are possible with this system. Depending on the storage approach, energy storage — charge and discharge durations — of 4 to greater than 24 hours are possible, much longer than most battery energy storage systems. Benefits include not only peak shaving and VAR control, but also grid balancing services to avoid the “spilling” of excess renewable power when supply exceeds demand and fast ramping in the evening hours.

Author(s):  
William M. Conlon

Successful deployment of large amounts of renewable solar and wind energy has created a pressing need for significant additions of grid connected energy storage. Excess renewable generation is increasingly necessitating curtailment or derating of renewable or conventional generators. The CAISO Duck Curve [8] illustrates the challenge caused by very large quantities of solar generation. Both large scale energy storage and flexible ramping are needed for renewable resources to be financially sustainable and to meet CO2 reduction goals. The Dispatchable Solar Combined Cycle (DSCC) integrates Concentrating Solar Power (CSP) with Thermal Energy Storage (TES) in a holistic combined cycle configuration to meet the challenges of the CAISO Duck Curve by delivering flexible capacity with dispatchable solar power. Energy cost from DSCC is comparable to that from a Combined Cycle Power Plant (CCPP), and substantially below the alternatives: Photovoltaic plus battery or Photovoltaic plus combustion turbine. DSCC also enable far higher integration of renewable power and far larger renewable capacity factors than the Integrated Solar Combined Cycle (ISCC), which typically has no storage. The innovative DSCC system: • uses energy storage to deliver power when it is most valuable, • increases the capacity factor to deliver more renewable energy, • improves the power plant Heat Rate to reduce fuel consumption, and • reduces the cost of power while addressing RPS and storage mandates. In DSCC, the CSP and TES are used primarily for latent heat: the evaporation of steam, and the Combustion Turbine (CT) exhaust gas is used primarily for sensible heating, especially superheating steam. This simplifies the integration of low-cost storage media, such as paraffinic oils or concrete, instead of molten salt, since high temperature storage is not needed. A single pressure, non-reheat steam cycle suitable, allowing for simplicity of design and operation, reducing costs and facilitating faster startup and ramping. With DSCC, the steam turbine generates about the same power as the CT, unlike a typical CCPP where about half the power comes from the steam cycle. The additional steam production reduces the Heat Rate about 25% compared to CCPP. The DSCC approach is ideally suited for repowering existing CSP plants, to provide firm capacity that can dispatch at valuable evening peak periods, increase the power output, and reduce fossil fuel use compared with conventional CCPP or peaking plants. This paper will outline the DSCC concept, and provide performance estimates for a reference plant.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2048 ◽  
Author(s):  
Rodrigo Martins ◽  
Holger Hesse ◽  
Johanna Jungbauer ◽  
Thomas Vorbuchner ◽  
Petr Musilek

Recent attention to industrial peak shaving applications sparked an increased interest in battery energy storage. Batteries provide a fast and high power capability, making them an ideal solution for this task. This work proposes a general framework for sizing of battery energy storage system (BESS) in peak shaving applications. A cost-optimal sizing of the battery and power electronics is derived using linear programming based on local demand and billing scheme. A case study conducted with real-world industrial profiles shows the applicability of the approach as well as the return on investment dependence on the load profile. At the same time, the power flow optimization reveals the best storage operation patterns considering a trade-off between energy purchase, peak-power tariff, and battery aging. This underlines the need for a general mathematical optimization approach to efficiently tackle the challenge of peak shaving using an energy storage system. The case study also compares the applicability of yearly and monthly billing schemes, where the highest load of the year/month is the base for the price per kW. The results demonstrate that batteries in peak shaving applications can shorten the payback period when used for large industrial loads. They also show the impacts of peak shaving variation on the return of investment and battery aging of the system.


Sign in / Sign up

Export Citation Format

Share Document