Development of Ultrasonic Temperature Sensors for Ultra-High Temperature Measurement in Nuclear Reactor Vessel

Author(s):  
Kil-Mo Koo ◽  
Kwang-Soon Ha ◽  
Rae-Joon Park ◽  
Sang-Baik Kim ◽  
Hee-Dong Kim ◽  
...  

The temperature measurement of a very high temperature core melt is of importance in LAVA (lower-plenum Arrested Vessel Attack) experiment in which gap formation between core melt and the reactor lower head, and the effect of the gap on thermal behavior are to be measured. The existing temperature measurement techniques have some problems, where the thermocouple, one of the contact methods, is restricted to under 2000°C, and the infrared thermometry, one of the non-contact methods, is unable to measure an internal temperature and very sensitive to the interference from reacted gases. So, in order to solve these problems, the delay time of ultrasonic wavelets due to high temperature is suggested. One of the key initial conditions to be measured in LAVA is the initial corium melt temperature. To measure it, the LAVA measurement group has developed several kinds of UTS’s. As a first stage, a molten material temperature was measured up to 2314°C. Also, the optimization design of the UTS (ultrasonic temperature sensor) with persistence at the high temperature was suggested in this paper. And the utilization of the theory suggested in this paper and the efficiency of the developed system are certified by performing experiments.

2020 ◽  
Vol 12 ◽  
Author(s):  
Fang Wang ◽  
Jingkai Wei ◽  
Caixia Guo ◽  
Tao Ma ◽  
Linqing Zhang ◽  
...  

Background: At present, the main problems of Micro-Electro-Mechanical Systems (MEMS) temperature detector focus on the narrow range of temperature detection, difficulty of the high temperature measurement. Besides, MEMS devices have different response characteristics for various surrounding temperature in the petrochemical and metallurgy application fields with high-temperature and harsh conditions. To evaluate the performance stability of the hightemperature MEMS devices, the real-time temperature measurement is necessary. Objective: A schottky temperature detector based on the metal/n-ZnO/n-Si structures is designed to measure high temperature (523~873K) for the high-temperature MEMS devices with large temperature range. Method: By using the finite element method (FEM), three different work function metals (Cu, Ni and Pt) contact with the n-ZnO are investigated to realize Schottky. At room temperature (298K) and high temperature (523~873K), the current densities with various bias voltages (J-V) are studied. Results: The simulation results show that the high temperature response power consumption of three schottky detectors of Cu, Ni and Pt decreases successively, which are 1.16 mW, 63.63 μW and 0.14 μW. The response temperature sensitivities of 6.35 μA/K, 0.78 μA/K, and 2.29 nA/K are achieved. Conclusion: The Cu/n-ZnO/n-Si schottky structure could be used as a high temperature detector (523~873K) for the hightemperature MEMS devices. It has a large temperature range (350K) and a high response sensitivity is 6.35 μA/K. Compared with traditional devices, the Cu/n-ZnO/n-Si Schottky structure based temperature detector has a low energy consumption of 1.16 mW, which has potential applications in the high-temperature measurement of the MEMS devices.


2010 ◽  
Vol 18 (13) ◽  
pp. 14245 ◽  
Author(s):  
Jun-long Kou ◽  
Jing Feng ◽  
Liang Ye ◽  
Fei Xu ◽  
Yan-qing Lu

Sign in / Sign up

Export Citation Format

Share Document