scholarly journals ASME Code Ductile Failure Criteria for Impulsively Loaded Pressure Vessels

Author(s):  
Robert E. Nickell ◽  
Thomas A. Duffey ◽  
Edward A. Rodriguez

Ductile failure criteria suitable for application to impulsively loaded high pressure vessels that are designed to the rules of the ASME Code Section VIII Division 3 are described and justified. The criteria are based upon prevention of load instability and the associated global failure mechanisms, and on protection against progressive distortion for multiple-use vessels. The criteria are demonstrated by the design and analysis of vessels that contain high explosive charges.

2009 ◽  
Vol 131 (3) ◽  
Author(s):  
R. D. Dixon ◽  
E. H. Perez

The available design formulas for flat heads and blind end closures in the ASME Code, Section VIII, Divisions 1 and 2 are based on bending theory and do not apply to the design of thick flat heads used in the design of high pressure vessels. This paper presents new design formulas for thickness requirements and determination of peak stresses and stress distributions for fatigue and fracture mechanics analyses in thick blind ends. The use of these proposed design formulas provide a more accurate determination of the required thickness and fatigue life of blind ends. The proposed design formulas are given in terms of the yield strength of the material and address the fatigue strength at the location of the maximum stress concentration factor. Introduction of these new formulas in a nonmandatory appendix of Section VIII, Division 3 is recommended after committee approval.


Author(s):  
Yongjun Chen ◽  
Jinyang Zheng ◽  
Guide Deng ◽  
Yuanyuan Ma ◽  
Guoyou Sun

Explosion containment vessels (ECVs), which can be generally classified into three categories, i.e., multiple use ECVs and one-time use ECVs, single-layered ECVs and multi-layered ECVs, metallic ECVs and composite ECVs according to the usage, structural form and the bearing unit, respectively, are widely used to completely contain the effects of explosions. There are fundamental differences between statically-loaded pressure vessels and ECVs that operate under extremely fast loading conditions. Conventional pressure design codes, such as ASME Section VIII, EN13445 etc., can not be directly used to design ECVs. So far, a lot of investigations have been conducted to establish design method for ECVs. Several predominant effects involved in the design of ECVs such as scale effect, failure mode and failure criteria are extensively reviewed. For multiple use single-layered metallic ECVs, dynamic load factor method and AWE method are discussed. For multiple use composite ECVs, a minimum strain criteria based on explosion experiments is examined. For one-time use ECVs, a strain limit method proposed by LANL and a maximum strain criteria obtained by Russia are discussed for metallic vessel and composite vessel, respectively. Some improvements and possible future work in developing design criterion for ECVs are recommended as a conclusion.


Author(s):  
Susumu Terada ◽  
Masato Yamada ◽  
Tomoaki Nakanishi

9Cr-1Mo-V steels (Gr. 91), which has an excellent performance at high temperature in mechanical properties and hydrogen resistance, has been used for tubing and piping materials in power industries and it can be a candidate material for high pressure vessels for high temperature processes in refining industries. The current Section VIII Division 2 of ASME code does not permit method A of paragraph 5.5.2.3 to be used for the exemption from fatigue analysis for Gr. 91 steels due to limitation of specified minimum tensile strength (585 MPa > 552 MPa). Method B of paragraph 5.5.2.4 also can’t be used because it requires the use of the fatigue curve which is limited to 371 °C lower than the needed temperature. Therefore new rules for fatigue evaluation of Gr. 91 steels at temperatures greater than 371 °C and less than 500 °C similar to CC 2605 for 2.25Cr-1Mo-0.25V(Gr. 22V) steels are necessary. This paper provides fatigue test results at 500 °C for Gr. 91 steels, the modification of CC 2605, sample inelastic analysis results for nozzles. Then, the new Code Case for Gr. 91 steels is proposed from these results.


Author(s):  
R. D. Dixon ◽  
E. H. Perez

The available design formulas for flat heads and blind end closures in the ASME Code, Section VIII, Divisions 1 and 2 are based on bending theory and do not apply to the design of thick flat heads used in the design of high pressure vessels. This paper presents new design formulas for thickness requirements and determination of peak stresses and stress distributions for fatigue and fracture mechanics analyses in thick blind ends. The use of these proposed design formulas provide a more accurate determination of the required thickness and fatigue life of blind ends. The proposed design formulas are given in terms of the yield strength of the material and address the fatigue strength at the location of the maximum stress concentration factor. Introduction of these new formulas in a non-mandatory appendix of Section VIII, Division 3 is recommended after committee approval.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Thomas A. Duffey ◽  
Kevin R. Fehlmann

Abstract High-explosive containment vessels are often designed for repeated use, implying predominately elastic material behavior. Each explosive test imparts an impulse to the vessel wall. The vessel subsequently vibrates as a result of the internal blast loading, with amplitude diminishing exponentially in time after a few cycles due to structural damping. Flaws present in the vessel, as well as new flaws induced by fragment impact during testing, could potentially grow by fatigue during these vibrations. Subsequent explosive tests result in new sequences of vibrations, providing further opportunity for flaws to grow by fatigue. The obvious question is, How many explosive experiments can be performed before flaws potentially grow to unsafe limits? Because ASME Code Case 2564-5 (Impulsively Loaded Pressure Vessels) has just been incorporated in Section VIII, Division 3 of the 2019 ASME Boiler and Pressure Vessel Code, evaluation of remaining life and fitness-for-service of explosive containment vessels now draws upon two interrelated codes and standards: ASME Section VIII-3 and API-579/ASME FFS-1. This paper discusses their implementation in determining the remaining life of dynamically loaded vessels that have seen service and are potentially damaged. Results of a representative explosive containment vessel are presented using actual flaw data for both embedded weld flaws and fragment damage. Because of the potentially large number of flaws that can be detected by modern nondestructive inspection methods, three simplifying assumptions and a procedure are presented for conservatively eliminating from further consideration the vast majority of the flaws that possess considerable remaining life.


Author(s):  
Jan Keltjens ◽  
Philip Cornelissen ◽  
Peter Koerner ◽  
Waldemar Hiller ◽  
Rolf Wink

The ASME Section VIII Division 3 Pressure Vessel Design Code adopted in its 2004 edition a significant change of the design margin against plastic collapse. There are several reasons and justifications for this code change, in particular the comparison with design margins used for high pressure equipment in Europe. Also, the ASME Pressure Vessel Code books themselves are not always consistent with respect to design margin. This paper discusses not only the background material for the code change, but also gives some practical information on when pressure vessels could be designed to a thinner wall.


Author(s):  
David Fuenmayor ◽  
Rolf Wink ◽  
Matthias Bortz

There are numerous codes covering the design, manufacturing, inspection, testing, and operation of pressure vessels. These national or international codes aim at providing assurance regarding the safety and quality of pressure vessels. The development of the Chinese economy has led to a significant increase in the number of installed high-pressure vessels which in turn required a revision of the existing regulations. The Supervision Regulation on Safety Technology for Stationary Pressure Vessel TSG 21-2016 superseded the existing Super-High Pressure Vessel Safety and Technical Supervision Regulation TSG R0002-2005 in October of 2016. This new regulation covers, among others, the design, construction, and inspection of pressure vessels with design pressures above 100 MPa. This paper provides a technical comparison between the provisions given in TSG 21-2016 for super-high pressure vessels and the requirements in ASME Boiler and Pressure Vessel Code Section VIII Division 3.


Author(s):  
J. Robert Sims

Offshore oil and gas wells are being drilled into formations that have pressures up to 200 MPa (30,000 psi) and temperatures over 175°C (350°F). Most of the existing API Standards for pressure equipment, such as valves and blow out preventers (BOPs), are limited to pressures of about 100 MPa (15,000 psi). The design requirements in ASME Section VIII Division 3, Alternative Rules for Construction of High Pressure Vessels (Div. 3), can be adapted for the design of this equipment with some modifications. Since the strength of the materials used in these applications is limited due to environmental cracking concerns, it is necessary to accept some local yielding in areas of stress concentrations. Therefore, it is particularly important to apply the elastic-plastic analysis requirements in Div. 3 with appropriate limits on local strain as well as the robust fracture mechanics based fatigue analysis requirements. Paper published with permission.


Sign in / Sign up

Export Citation Format

Share Document