Dynamic Support in Piping Systems: A Novel Design Based on Automotive Shock Absorbers

2003 ◽  
Author(s):  
Roman W. Motriuk ◽  
Edwin Mikulcik

Complex vibration fields are observed in piping systems that are mechanically or acoustically interconnected with turbo-machinery. The magnitudes of vibrations in such systems depend on the coupling of the piping response characteristics with the excitations that are present. In cases of high vibration amplitudes, successful mechanical attenuation can be achieved by altering the piping system’s mass or its stiffness, thus detuning the piping response from the excitation. Another approach is to introduce damping into the piping system so that the vibration energy can be efficiently dissipated, hence mitigating unacceptable vibration amplitudes. All of the above principles are used successfully across the industry. This paper describes a novel support design that has been used successfully to solve vibration problems in cases such as those described above. This device was initially conceived as being a very economical solution for simply adding damping to reduce the vibration amplitude. Its economy is derived from being based on the use of standard automotive or truck-type shock absorbers, which were expected to be very effective in providing damping because of their success in automotive applications. The device which was designed is lightweight and therefore very versatile in the manner in which it can be deployed, such that anchoring and attachment requirements can be very simple, thus accommodating space or foundation necessities that could be problematic using more standard approaches. Because of the lack of information existing on the damping properties of such shock absorbers, the first design was implemented on a trial-and-error basis. However, its success motivated further investigations into the characteristics of shock absorbers, so that the initial installation could be evaluated through a more proper analysis and lead to a more general design procedure for other applications. Extensive laboratory tests were done using several different shock absorbers to gain an insight into their characteristics when used in the manner required here. The test procedures and the data from these tests are described in this paper, together with the analysis of the successful installation. It was found, unexpectedly, that the shock absorbers contribute significantly in both damping and stiffness, thus providing a powerful combination of detuning as well as damping when used in this way. This paper demonstrates a general approach to the techniques of testing and the design of similar such systems.

1990 ◽  
Vol 112 (1) ◽  
pp. 34-38 ◽  
Author(s):  
T. Chiba ◽  
H. Kobayashi

Improving the reliability of the piping systems can be achieved by eliminating the mechanical snubber and by reducing the response of the piping. In the seismic design of piping system, damping is one of the important parameters to reduce the seismic response. It is reported that the energy dissipation at piping supports contributes to increasing the damping ratio of piping system. Visco-elastic damper (VED) and elasto-plastic damper (EPD) were developed as more reliable, high-damping piping supports. The dynamic characteristics of these dampers were studied by the component test and the full-scale piping model test. Damping effect of VED is independent of the piping response and VED can be modeled as a complex spring in the dynamic analysis. On the other hand, damping ratio of piping system supported by EPD increases with the piping response level. So, these dampers are helpful to increase the damping ratio and to reduce the dynamic response of piping system.


Author(s):  
Samuel A. Huff ◽  
John P. Leach ◽  
Daniel S. Vail

As part of the design basis of any piping system utilized to convey materials, pipe supports are required to ensure those pipes remain in their designed locations and do not overly expand or move due to sustained or occasional loads. These loads represent the total forces and moments in the piping components and as a result create stresses that affect the life of the component. Proper design and maintenance of these supports per the applicable codes and standards provide a reasonable life expectancy for the piping systems. This presentation will review the various codes and standards utilized for both pipe support design and maintenance. A high level overview of what information must be obtained to perform an analysis and meet ASME B31.1 Power Piping code requirements when modifying piping systems will be presented. Specific inputs to system design and computational software including material properties, stress intensification factors (SIF), thicknesses and tolerances, pressures, temperatures, insulation, coatings, the occasional loads, etc. will be discussed. Guidelines will be discussed for determining what piping modifications warrant a full pipe stress analysis to be performed. Recommendations for pipe support maintenance inspections will be provided to facilitate increased life expectancies of subject piping systems. The mandatory requirements of ASME B31.1 Chapter VII will be discussed, as well as recommendations from the non-mandatory appendix. Implementing maintenance programs at existing facilities will be discussed. Step by step recommendations for how to apply these guidelines within a long-term life extension program will be given. Tolerances and general guidelines associated with these programs will also be discussed. Finally, common pipe support failures, what they can affect, and how to look for early indicators of fatigue or failure will be covered.


2021 ◽  
Vol 143 (5) ◽  
Author(s):  
Nikola Jaćimović ◽  
Sondre Luca Helgesen

Abstract ASME B31.3, the leading process piping system design code, has included in its 2018 edition a new procedure for evaluation of high cycle fatigue in process piping systems. As stated in the Appendix W of ASME B31.3-2018, this new procedure is applicable to any load resulting in the stress range in excess of 20.7 MPa (3.0 ksi) and with the total number of cycles exceeding 100,000. However, this new procedure is based on the stress range calculation typical to ASME B31 codes which underestimates the realistic expansion stress range by a factor of ∼2. While the allowable stress range used typically for fatigue evaluation of piping systems is adjusted to take into consideration this fact, the new fatigue design curves seem not to take it into account. Moreover, the applicability of the new design procedure (i.e., welded joint fatigue design curves) to the components which tend to fail away from the bends is questionable. Two examples are presented at the end of the paper in order to substantiate the indicated inconsistencies in the verification philosophy.


Author(s):  
Young Seok Kim ◽  
Jung Kwang Yoon ◽  
Young Ho Kim

This paper proposes an analysis method for Section III, Division 1, Class 3 buried High Density polyethylene (HDPE) piping system in the nuclear power plants (NPP). Although HDPE pipe would yield at high temperature (limited to 140°F), it may be suitable for the areas prone to earthquakes; owing to its comparable ductility and flexibility. Thus, the buried HDPE piping may be applicable for the safety related Essential Service Water (ESW) system in the NPPs. Despite some limitations to buried HDPE piping, the piping could be designed based on ASME Code Case [1]. Generally, codes and standards including ASME Code Case [1] do not provide load combinations for the design of both buried steel piping and HDPE piping. Meanwhile, EPRI Report [4] provides load combinations including thermal expansion effects and seismic loads with detailed seismic criteria for polyethylene pipe. In this paper, load cases and load combinations for buried HDPE piping are suggested for implementation of reference documents and a buried HDPE piping system is analyzed referring to EPRI Report [4] to evaluate stress, force, and moment using a piping stress analysis program. Additionally, this paper will recommend the design procedure in accordance with ASME Code Case [1] using an example of buried HDPE piping analysis. An investigation of soil spring coefficients and the design considerations for hydrostatic tests are suggested for the enhanced analysis of buried HDPE piping.


Author(s):  
Lingfu Zeng ◽  
Lennart G. Jansson

A nuclear piping system which is found to be disqualified, i.e. overstressed, in design evaluation in accordance with ASME III, can still be qualified if further non-linear design requirements can be satisfied in refined non-linear analyses in which material plasticity and other non-linear conditions are taken into account. This paper attempts first to categorize the design verification according to ASME III into the linear design and non-linear design verifications. Thereafter, the corresponding design requirements, in particular, those non-linear design requirements, are reviewed and examined in detail. The emphasis is placed on our view on several formulations and design requirements in ASME III when applied to nuclear power piping systems that are currently under intensive study in Sweden.


2016 ◽  
Vol 30 (6) ◽  
pp. 2615-2625 ◽  
Author(s):  
Oguz Dogan ◽  
Fatih Karpat ◽  
Celalettin Yuce ◽  
Necmettin Kaya ◽  
Nurettin Yavuz ◽  
...  

2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

Pressurized piping systems used for an extended period may develop degradations such as wall thinning or cracks due to aging. It is important to estimate the effects of degradation on the dynamic behavior and to ascertain the failure modes and remaining strength of the piping systems with degradation through experiments and analyses to ensure the seismic safety of degraded piping systems under destructive seismic events. In order to investigate the influence of degradation on the dynamic behavior and failure modes of piping systems with local wall thinning, shake table tests using 3D piping system models were conducted. About 50% full circumferential wall thinning at elbows was considered in the test. Three types of models were used in the shake table tests. The difference of the models was the applied bending direction to the thinned-wall elbow. The bending direction considered in the tests was either of the in-plane bending, out-of-plane bending, or mixed bending of the in-plane and out-of-plane. These models were excited under the same input acceleration until failure occurred. Through these tests, the vibration characteristic and failure modes of the piping models with wall thinning under seismic load were obtained. The test results showed that the out-of-plane bending is not significant for a sound elbow, but should be considered for a thinned-wall elbow, because the life of the piping models with wall thinning subjected to out-of-plane bending may reduce significantly.


Author(s):  
Eiji Shirai ◽  
Tetsuya Zaitsu ◽  
Kazutoyo Ikeda ◽  
Toshiaki Yoshii ◽  
Masami Kondo ◽  
...  

At domestic PWR plants in Japan, one of the major key issues is earthquake-proof safety [1–3]. Recently, a design procedure using energy absorption, not conventional rigid design, was authorized according to revised review guidelines for aseismic design (JEAC4601). Therefore, we focused on the design technique that utilizes energy absorption effects to reduce the seismic responses of the piping system with U-Bolt, by the static and dynamic tests of simplified piping model supported by U-Bolt. The force-displacement characteristics and a fatigue diagram were obtained by the tests.


1997 ◽  
Vol 119 (4) ◽  
pp. 451-456 ◽  
Author(s):  
C. Lay ◽  
O. A. Abu-Yasein ◽  
M. A. Pickett ◽  
J. Madia ◽  
S. K. Sinha

The damping coefficients and ratios of piping system snubber supports were found to vary logarithmically with pipe support nodal displacement. For piping systems with fundamental frequencies in the range of 0.6 to 6.6 Hz, the support damping ratio for snubber supports was found to increase with increasing fundamental frequency. For 3-kip snubbers, damping coefficient and damping ratio decreased logarithmically with nodal displacement, indicating that the 3-kip snubbers studied behaved essentially as coulomb dampers; while for the 10-kip snubbers studied, damping coefficient and damping ratio increased logarithmically with nodal displacement.


2003 ◽  
Vol 125 (3) ◽  
pp. 593-601 ◽  
Author(s):  
B. Demeulenaere ◽  
J. De Schutter

Traditionally, cam-follower systems are designed by assuming a constant camshaft speed. Nevertheless, all cam-follower systems, especially high-speed systems, exhibit some camshaft speed fluctuation (despite the presence of a flywheel) which causes the follower motions to be inaccurate. This paper therefore proposes a novel design procedure that explicitly takes into account the camshaft speed variation. The design procedure assumes that (i) the cam-follower system is conservative and (ii) all forces are inertial. The design procedure is based on a single design choice, i.e., the amount of camshaft speed variation, and yields (i) cams that compensate for the inertial dynamics for any period of motion and (ii) a camshaft flywheel whose (small) inertia is independent of the period of motion. A design example shows that the cams designed in this way offer the following advantages, even for non-conservative, non-purely inertial cam-follower systems: (i) more accurate camshaft motion despite a smaller flywheel, (ii) lower motor torques, (iii) more accurate follower motions, with fewer undesired harmonics, and (iv) a camshaft motion spectrum that is easily and robustly predictable.


Sign in / Sign up

Export Citation Format

Share Document