Investigation on Buckling Behavior of Cylindrical Liquid Storage Tanks Under Seismic Excitation: 1st Report — Investigation on Elephant Foot Bulge

2003 ◽  
Author(s):  
Tomohiro Ito ◽  
Hideyuki Morita ◽  
Koji Hamada ◽  
Akihisa Sugiyama ◽  
Yoji Kawamoto ◽  
...  

When a thin walled cylindrical liquid storage tank suffers a large seismic base excitation, buckling phenomena may be caused such as bending buckling at the bottom portion and shear buckling at the middle portion of the tank. However, the dynamic behaviors of the tanks is not fully clarified, especially those from the occurrence of buckling to some failures. In this study, bending buckling phenomena were focused which will be categorized as diamond buckling and elephant foot bulge. As ones of a series of studies, dynamic buckling tests were performed using large scale liquid storage tank models simulating thin walled cylindrical liquid storage tanks in nuclear power plants. The input seismic acceleration was increased until the elephant foot bulge occurred, and the vibrational behavior before and after buckling was investigated. In addition to the large scaled model tests, fundamental tests using small scaled tank models were also performed in order to clarify the effects of dynamic liquid pressure on the buckling threshold and deformation patterns.

Author(s):  
Hideyuki Morita ◽  
Tomohiro Ito ◽  
Koji Hamada ◽  
Akihisa Sugiyama ◽  
Yoji Kawamoto ◽  
...  

When a thin walled cylindrical liquid storage tank suffers a large seismic base excitation, buckling phenomena such as elephant foot bulge at the bottom portion and nonlinear ovaling vibration at the upper portion shows nonlinearity between the input and response level and suddenly occurs for the excessive input level, thus will be called as “nonlinear ovaling vibration” hereafter in this paper, may be caused. In the 1st report, the elephant foot bulge phenomena and the liquid pressure effects were investigated. In this 2nd report of the series of studies, the effect of nonlinear ovaling vibration phenomena were investigated based on the dynamic buckling tests using scaled models of thin walled cylindrical liquid storage tanks for nuclear power plants. The mechanism and the effect of vertical excitation and liquid sloshing were also studied and discussed.


2007 ◽  
Vol 120 ◽  
pp. 199-206
Author(s):  
Hitohsi Kaguchi ◽  
Koji Hamada ◽  
Akihisa Sugiyama ◽  
Hideyuki Morita ◽  
Koji Setta ◽  
...  

As for thin walled cylindrical liquid storage tanks in nuclear power plants, the current elastic design guideline against seismic loading might result in too conservative component design. Therefore, it is thought possible to make the design procedure more reasonable by taking dynamic response reduction into account. Experiments using scaled models as well as numerical analyses were carried out, and seismic behavior of thin walled cylindrical liquid storage tanks was simulated to investigate energy absorption capacity and seismic resistance of those tanks. Based on the test and analysis results, assessment procedure for buckling considering post-buckling behavior has been proposed.


Author(s):  
Akira Maekawa ◽  
Tsuneo Takahashi ◽  
Katsuhisa Fujita

In Japanese nuclear power plants, quantitative evaluation for seismic safety margin of the equipment is an important issue. In this study, the seismic safety margin of cylindrical liquid storage tanks used in nuclear power plants was investigated experimentally and analytically using test tanks with water inside. The buckling load of the tanks was examined because buckling was their dominant damage mode. The test tanks were reduced-scale models similar to the large-scale liquid storage tanks used in nuclear power plants. The experimental buckling load was compared with the design value. Furthermore, dynamic and static elastic-plastic buckling simulations by finite element analysis using a three-dimensional model were made and then the simulation results were compared with the experimental and design values. The simulated and experimental results agreed well, showing the values were the nearly-true buckling load, that is, proof stress. The design value was lower than the other values, indicating the difference was the seismic safety margin. The above results illustrated that existing actual tanks would have a bigger seismic safety margin.


2019 ◽  
Vol 9 (11) ◽  
pp. 2376 ◽  
Author(s):  
Wei Jing ◽  
Huan Feng ◽  
Xuansheng Cheng

Based on potential flow theory and arbitrary Lagrangian–Eulerian method, shell–liquid and shell–wind interactions are solved respectively. Considering the nonlinearity of tank material and liquid sloshing, a refined 3-D wind–shell–liquid interaction calculation model for liquid storage tanks is established. A comparative study of dynamic responses of liquid storage tanks under wind, earthquake, and wind and earthquake is carried out, and the influences of wind speed and wind interference effect on dynamic responses of liquid storage tank are discussed. The results show that when the wind is strong, the dynamic responses of the liquid storage tank under wind load alone are likely to be larger than that under earthquake, and the dynamic responses under wind–earthquake interaction are obviously larger than that under wind and earthquake alone. The maximum responses of the tank wall under wind and earthquake are located in the unfilled area at the upper part of the tank and the filled area at the lower part of the tank respectively, while the location of maximum responses of the tank wall under wind–earthquake interaction is related to the relative magnitude of the wind and earthquake. Wind speed has a great influence on the responses of liquid storage tanks, when the wind speed increases to a certain extent, the storage tank is prone to damage. Wind interference effect has a significant effect on liquid storage tanks and wind fields. For liquid storage tanks in special environments, wind and earthquake effects should be considered reasonably, and wind interference effects cannot be ignored.


2012 ◽  
Vol 166-169 ◽  
pp. 2490-2493
Author(s):  
Yuan Zhang ◽  
You Hai Guan

Due to frequent earthquakes in recent years, the seismic safety of large storage tank is very important. In this paper, seismic response of large liquid storage tanks is analyzed. A model for liquid storage tank is established firstly. By modality analysis, dynamic behavior of large storage tank is obtained. After the model is excitated by seismic, seismic responses are obtained. The conclusions show that, without considering liquid-solid coupling, "elephant foot" buckling phenomenon doesn’t appear. This study provides reference for seismic design and seismic performance study of large storage tank.


2014 ◽  
Vol 08 (05) ◽  
pp. 1450013 ◽  
Author(s):  
Sandip Kumar Saha ◽  
Vasant A. Matsagar ◽  
Arvind K. Jain

The effect of different isolator parameters on earthquake response of base-isolated liquid storage tanks is investigated herein. Mechanical analog, with three lumped masses, is used to model ground supported base-isolated liquid storage tank, and analyzed for recorded earthquake ground accelerations. The nonlinear force–deformation behavior of the isolator is mathematically modeled in two different ways, represented by (a) equivalent linear elastic-viscous and (b) bi-linear hysteretic behaviors. The equations of motion for the base-isolated tank are derived and solved in the incremental form using Newmark's step-by-step method of integration. Two different configurations of liquid storage tank (i.e. broad and slender) are considered to show the effect of the equivalent linear and bi-linear modeling of the isolator on the important earthquake response quantities. Effect of nonlinear hysteretic modeling of the isolator on peak response of the base-isolated liquid storage tanks is also investigated. The effect on earthquake response of the base-isolated liquid storage tank is studied for different parameters of the isolator for a range of slenderness ratio of the tank. The parameters considered include the characteristic strength of the isolator, isolation time period, isolator yield displacement etc. Significant difference is observed in the earthquake response of the base-isolated liquid storage tanks owing to the equivalent linear and bi-linear modeling approaches of the isolator. However, for bi-linear and nonlinear hysteretic modeling of the isolator, difference between the peak earthquake response of base-isolated liquid storage tanks are insignificant. The earthquake response of base-isolated liquid storage tanks is significantly influenced by the variation in the isolator parameters and slenderness ratio of the tank.


2016 ◽  
Author(s):  
Geoffrey Roest ◽  
Gunnar Schade

Abstract. The Eagle Ford Shale in southern Texas is home to a booming unconventional oil and gas industry, the climate and air quality impacts of which remain poorly quantified due to uncertain emissions estimates. We used the atmospheric enhancement of alkanes from Texas Commission on Environmental Quality volatile organic compound monitors across the shale, in combination with back trajectory and dispersion modeling, to quantify C2–C4 alkane emissions for a region in southern Texas, including the core of the Eagle Ford, for a set of 68 days from July 2013 to December 2015. Emissions were partitioned into raw natural gas and liquid storage tank sources using gas and headspace composition data, respectively, and observed enhancement ratios. We also estimate methane emissions based on typical ethane-to-methane ratios in gaseous emissions. The median emission rate from raw natural gas sources in the shale, calculated as a percentage of the total produced natural gas in the upwind region, was 0.8 % with an interquartile range (IQR) of 0.5 %–1.4 %, close to the U.S. Environmental Protection Agency's (EPA) current estimates. However, storage tanks contributed 24 % of methane emissions, 54 % of ethane, 82% percent of propane, 90 % of n-Butane, and 83 % of isobutane emissions. The inclusion of liquid storage tank emissions results in an emission rate of 2.2 % (IQR of 0.9 4.9 %) relative to produced natural gas, exceeding the EPA estimate by a factor of two. We conclude that leaks from liquid storage tanks are likely a major source for the observed non-methane hydrocarbon enhancements in the northern hemisphere.


2017 ◽  
Vol 17 (18) ◽  
pp. 11163-11176 ◽  
Author(s):  
Geoffrey Roest ◽  
Gunnar Schade

Abstract. The Eagle Ford Shale in southern Texas is home to a booming unconventional oil and gas industry, the climate and air quality impacts of which remain poorly quantified due to uncertain emission estimates. We used the atmospheric enhancement of alkanes from Texas Commission on Environmental Quality volatile organic compound monitors across the shale, in combination with back trajectory and dispersion modeling, to quantify C2–C4 alkane emissions for a region in southern Texas, including the core of the Eagle Ford, for a set of 68 days from July 2013 to December 2015. Emissions were partitioned into raw natural gas and liquid storage tank sources using gas and headspace composition data, respectively, and observed enhancement ratios. We also estimate methane emissions based on typical ethane-to-methane ratios in gaseous emissions. The median emission rate from raw natural gas sources in the shale, calculated as a percentage of the total produced natural gas in the upwind region, was 0.7 % with an interquartile range (IQR) of 0.5–1.3 %, below the US Environmental Protection Agency's (EPA) current estimates. However, storage tanks contributed 17 % of methane emissions, 55 % of ethane, 82 % percent of propane, 90 % of n-butane, and 83 % of isobutane emissions. The inclusion of liquid storage tank emissions results in a median emission rate of 1.0 % (IQR of 0.7–1.6 %) relative to produced natural gas, overlapping the current EPA estimate of roughly 1.6 %. We conclude that emissions from liquid storage tanks are likely a major source for the observed non-methane hydrocarbon enhancements in the Northern Hemisphere.


Sign in / Sign up

Export Citation Format

Share Document