Effects of Scatter in Bolt Preload of Pipe Flange Connections With Spiral Wound Gaskets Under Internal Pressure: In Case of Larger Pipe Flange Connection With 20" Nominal Diameter

Author(s):  
Toshiyuki Sawa ◽  
Wataru Maezaki

It has been well known that a scatter in axial bolt forces of pipe flange connections tightened by the torque control method is substantial. In practice, pipe flange connections with the larger nominal diameter tightened by the torque control method have been used, frequently. So, in an optimum design of pipe flange connections with gaskets, it is necessary to understand the characteristics of the pipe flange connections with larger nominal diameter under internal pressure and the contact gasket stress distributions due to the scatter of the axial bolt forces in the connections tightened by the torque control method. In this paper, the leakage tests were performed in the actual larger pipe flange connections with 20” nominal diameter using helium gas. Then, the effects of the scatter in the axial bolt forces tightened by the torque control method on the gas leakage were also examined. By using the calculated contact stress distributions and the results of the leakage tests, the sealing performance was evaluated.

Author(s):  
Toshiyuki Sawa ◽  
Mitsuhiro Matsumoto ◽  
Satoshi Nagata

It has been well known that a scatter in axial bolt forces of pipe flange connections tightened by the torque control method is substantial. It is necessary for evaluating the sealing performance of the pipe flange connections with the gaskets subjected to intemal pressure to know the contact gasket stress distributions due to the scatter of the axial bolt forces in the connections tightened by the torque control method. This paper deals with the leakage of the pipe flange connections with a spiral wound gasket and that with a compressed sheet gasket tightened by the torque control method. The scatter in the axial bolt forces was measured in the experiments. The contact gasket stress distributions at the interfaces of the pipe flange connections with the gaskets were calculated under the measured axial bolt forces by using elasto-plastic finite element method (FEM) taking into account hysteresis and non-linearity in the stress-strain curves of the gaskets. The effects of the scatter in the axial bolt forces tightened by the torque control method on the gas leakage were also examined by using the actual pipe flange connections. As the result, a difference in an amount of gas leakage measured was found to be substantial between our study and PVRC procedure. By using the calculated contact gasket stress distributions under the internal pressure and the results of the leakage tests, the sealing performance was evaluated. It is found that the sealing performance is worse in the actual pipe flange connection than that evaluated by PVRC procedure.


Author(s):  
Toshiyuki Sawa ◽  
Wataru Maezaki ◽  
Satoshi Nagata

It has been well known that a scatter in axial bolt forces of pipe flange connections tightened by the torque control method is substantial. It is necessary for evaluating the sealing performance of the pipe flange connections with the gaskets subjected to internal pressure and external bending moment to know the contact gasket stress distributions due to the scatter of the axial bolt forces in the connections tightened by the torque control method. This paper deals with the leakage of the pipe flange connections with a spiral wound gasket subjected to internal pressure and external bending moment tightened by the torque control method. The scattered axial bolt forces were measured in the experiments. The contact gasket stress distributions at the interfaces between pipe flanges and the gasket were calculated under the measured axial bolt force by using elasto-plastic finite element method (FEM) taking into account hysteresis and non-linearity in the stress-strain curves of spiral wound gasket. The effects of the scatter in the axial bolt forces tightened by the torque control method on the gas leakage were also examined by using the actual pipe flange connections under internal pressure and external bending moment. By using the calculated contact stress distributions and the results of the leakage tests, the sealing performance was evaluated. It is found that the sealing performance is worse in the actual pipe flange connection than that evaluated by PVRC procedure.


Author(s):  
Yoshio Takagi ◽  
Toshiyuki Sawa ◽  
Hiroyasu Torii ◽  
Yuya Omiya

It has been well known that a scatter in axial bolt forces in pipe flange connections tightened by the torque control method is substantial. In practice, pipe flange connections with the large nominal diameter tightened by the torque control method have been used in chemical industry, and so on. In our study, the characteristics of the connections with smaller nominal diameter (less than 8″) have been shown. So, in an optimum design of pipe flange connections with gaskets, it is necessary to understand the characteristics of the pipe flange connections with large nominal diameter under internal pressure and the contact gasket stress distributions due to the scatter in axial bolt forces in the connections tightened by the torque control method. In this paper, the experimental and FE analyses were done to evaluate the effect of scatter in axial bolt force on the gasket stress distribution and the sealing performance of pipe flange connections with 20″ nominal diameter. Two types of torque controlled assembling procedures, that is, ASME PCC-1 and JIS B 2251 procedures, are evaluated as an assembling procedures and an effect of scatter in the axial bolt forces obtained from the above methods is examined. Then, the effect of scatter in the axial bolt forces on the sealing performance of the connection is evaluated. The contact stress distribution in the larger pipe flange connection with 20″ nominal diameter under internal pressure is analyzed using FEM by taking into account a non-linearity and a hysteresis. The measured scatter in the axial bolt forces is applied in the FEM calculations.


Author(s):  
Ryou Kurosawa ◽  
Toshiyuki Sawa ◽  
Yuya Omiya ◽  
Kentaro Tenma

Bolted joints with gaskets such as flexible box-shaped flange joints have been used in mechanical structures. The joints are usually used under internal pressure as well as other loadings such as thermal, impact loadings and so on. In designing the bolted flexible box-shaped flange joint with gaskets, it is important to evaluate the sealing performance of the joints under internal pressure and thermal conduction conditions. In this paper, the contact gasket stress distributions and changes in bolt load in the bolted flexible box-shaped flange joint with joint sheet gaskets subjected to internal pressure and thermal conduction condition are analyzed using the finite element method (FEM). The leakage tests were conducted using an actual box-shaped flange connection with a joint sheet gasket. Using the contact gasket stress distributions under internal pressure at an elevated temperature (Helium gas) obtained from the FEM calculations and the amount of the gas leakage measured in the experiment, the sealing performances are evaluated experimentally and numerically. In addition, the effect of the thermal conduction condition on the sealing performance is examined. Furthermore, a method how to determine the bolt preload of the flexible box-shaped flange joint at an elevated temperature for a given tightness parameter is demonstrated. Discussion is made on the sealing performance.


Author(s):  
Toshiyuki Sawa ◽  
Yoshio Takagi ◽  
Katsuhiro Yamada

It has been well known that a scatter in axial bolt forces of pipe flange connections tightened by the torque control method is substantial. It is necessary for evaluating the sealing performance of the pipe flange connections with the gaskets subjected to internal pressure to know the contact gasket stress distributions due to the scatter of the axial bolt forces in the connections tightened by the torque control method. Especially, when gases are used in the pipe flange connections with gaskets at a high temperature, it is necessary to evaluate the amount of gas leakage. In this study, when bolts and nuts in a pipe flange connection were tightened using a torque wrench, the axial bolt forces were measured and then the amount of gas leakage in the pipe flange connection at 50,100,150 and 200 °C was measured under internal pressure. Leakage tests were performed using Helium gases. In addition, the thermal stress distributions at the interfaces between pipe flanges and the gasket under heat condition (temperature 50,100,150 and 200 °C) and internal pressure were calculated by using the finite element method (FEM) taking into account hysteresis in the stress-strain curves of a spiral wound gasket. By using the calculated contact stress distributions and the results of the leakage tests, the sealing performance was evaluated.


Author(s):  
Satoshi Nagata ◽  
Toshiyuki Sawa ◽  
Seiichi Hamamoto

It has been well known that the scatter in axial bolt forces of bolted flange connections tightened by torque control methods is substantial. In evaluating the sealing performance of a bolted flange connection with a gasket subjected to internal pressure, it is necessary to know the contact gasket stress distributions due to the scatter of the axial bolt forces in the flange connections tightened by torque control methods. This paper deals with the leakage of a bolted flange connection with a cover of pressure vessel including a spiral wound gasket tightened by a torque wrench. The scatter in the axial bolt forces was measured using strain gauges attached at the shank of bolts. The amount of leakage from the bolted flange connection with cover of pressure vessel was measured by so-called pressure decay method. The gas employed was Helium. From the measured leakage, the actual assembly efficiency is examined. The eight bolts and nuts were tightened according to the ASME PCC-1 method and Japanese method developed by High Pressure Institute (HPI). The difference in the bolt preload was shown between the ASME method and the HPI method. The contact gasket stress distributions at the interface of the flange connection with the gasket were calculated under the measured axial bolt forces by means of finite element analysis. Using the calculated gasket contact stress distribution, the amount of gas leakage was estimated. The estimated gas leakage was compared with the measured results.


Author(s):  
Toshiyuki Sawa ◽  
Satoshi Nagata ◽  
Naofumi Ogata

This paper deals with the stress analysis of a pipe flange connection with a spiral wound gasket using the elasto-plastic finite element method taking account the hysteresis and the non-linearity in the stress-strain curve of the spiral wound gasket, when an internal pressure is applied to the pipe flange connections with the different nominal diameters from 2 to 20. The effects of the nominal diameter of the pipe flange on the contact stress distributions at the interfaces are examined. Leakage tests of the pipe flange connections with 3 and 20 nominal diameters were conducted and measurement of the axial bolt force was also performed. The results by the finite element analysis are fairly consistent with the experimental results concerning the variation in the axial bolt force. By using the contact stress distributions and the results of the leakage test, the new gasket constants are evaluated. As a result, it is found that the variations in the contact stress distributions are substantial due to the flange rotation in the pipe flange connections with the larger nominal diameter. In addition, a method to determine the bolt preload for a given tightness parameter is demonstrated.


Author(s):  
Yuya Omiya ◽  
Toshiyuki Sawa

Pipe flange connections with gaskets in chemical plants, electric power plants and other industrial plants are usually exposed to elevated internal pressure with cyclic thermal condition. It is important to investigate the sealing performance of pipe connections under long term severe thermal exposure swings to ensure operational safety. In this study, the effects of cyclic thermal conditions on the sealing performance and mechanical characteristics in larger and smaller nominal diameter of pipe flange connection are examined using FEM calculations. Helium gas leakage is predicted using the contact gasket stress obtained from the FEM results. On other hand, the leakage tests using the smaller nominal diameter of pipe flange connection were conducted to measure the amount of helium gas leakage and to compare with the predicted amount of gas leakage. As the results, the contact gasket stress distributions were changed dramatically under cyclic thermal condition and elevated internal pressure. In the pipe flange connections with smaller nominal diameter, the contact gasket stress was the smallest in the restart condition. On other hand, the minimum contact gasket stress in the pipe flange connection with larger nominal diameter was depending on the materials of connection. In the pipe flange connection with larger nominal diameter, the contact gasket stress distributed and changed in the radial direction due to the flange rotation. A fairly good agreement was found between the experimental leakage result and predicted leakage results.


Author(s):  
Toshiyuki Sawa ◽  
Naoki Kawasaki ◽  
Yoshio Takagi ◽  
Hiroyasu Torii

Flange rotation with internal pressure affects the sealing performance of pipe flange connections more with increasing the pipe nominal diameter. Therefore, it is hard to estimate the sealing performance of pipe flange connections with larger nominal diameter by using the test results of the sealing performance for pipe flange connections with small nominal diameter. In this study, the 20" diameter pipe flange connection was experimentally used as a large nominal diameter pipe flange connection and analyzed the stress in the connection. In the experiments, the sealing performance of the pipe flange connection was evaluated by measuring the amount of gas leakage at 50 °C and 100 °C under internal pressure. Non-asbestos graphite gaskets were used in the experiments. The bolts and nuts were tightened according to the Japanese method (HPIS Z103 TR). The gasket contact stress distributions of larger nominal diameter pipe flange connection were calculated by FEM under elevated temperature conditions as well as internal pressure application. The estimated results were compared with the experimental results. The results were also compared with the small nominal diameter test result and discussed.


Author(s):  
Kentaro Tenma ◽  
Ryou Kurosawa ◽  
Toshiyuki Sawa

Bolted connections with gaskets such as flexible box-shaped flange connections have been used in mechanical structures. The connections are usually used under internal pressure as well as other loadings such as thermal, impact loadings and so on. In designing the bolted flexible box-shaped flange connections with gaskets, it is important to evaluate the sealing performance of the connections under internal pressure and thermal conduction conditions. In this paper, the contact gasket stress distributions and changes in bolt preload in the bolted flexible box-shaped flange connection with compressed sheet gaskets subjected to internal pressure and thermal conduction condition are analyzed using the finite element method (FEM). The leakage tests were conducted using an actual box-shaped flange connection with a compressed sheet gasket. Using the contact gasket stress distributions under internal pressure at an elevated temperature (Helium gas) obtained from the FEM calculations and an amount of the gas leakage measured in the experiment, the sealing performances are evaluated experimentally and numerically. The estimated amount of gas leakage is in a fairly good agreement with the measured results. In addition, the effect of the thermal conduction condition on the sealing performance is examined. Furthermore, the effects of the bolt pitch and the linear thermal expansion coefficients of the flanges and the gasket are examined at elevated temperature (20,80,100°C). Discussion is made on the effects of some factors on the sealing performance.


Sign in / Sign up

Export Citation Format

Share Document