Residual Stresses in Austenitic Cladding

Author(s):  
Milan Brumovsky ◽  
Vladislav Pistora ◽  
Ivan Kupka

Reactor pressure vessels (RPV) are usually manufactured with austenitic cladding on their inner surface as a protection against corrosion from the primary circuit water environment. Thus, they are not included into the strength calculations of pressure vessels due to their lower strength properties and much smaller thickness in comparison with those of vessels as they are taken only as a corrosion layer. In the same time, due to different thermal coefficients and Young moduli, welding of austenitic cladding results in a high residual stresses in the cladding and also in the adjacent area in the base ferritic metal. These residual stresses as well as stresses resulted from the temperature field in the vessels represent necessary inputs into pressurized thermal shock calculations. WWER (Water-Water Energy Reactor = PWR type) reactor pressure vessels have relatively thick cladding — nominally 8 mm — made from two layers: first layer of 25/10 type welded by one pass while the second layer of 18/10/Ti typed is usually welded by three passes. The main part of the vessels was performed by strip welding with strips of 60 mm wide. Results of residual stresses measurements are given in the paper. Method with incremental milling of beams was used for the measurements and determination of residual stresses. Tests were performed on specimens in as-welded state and also after final heat treatment of the vessels, i.e. after several stress relieves including first hydrotest in shop. As residual stresses depends strongly also on direction of welding, beams were oriented in both directions — parallel and perpendicular to the welding direction. Results of these measurements are shown and discussed in the paper.

Author(s):  
Dominique Moinereau ◽  
Jean-Michel Frund ◽  
Henriette Churier-Bossennec ◽  
Georges Bezdikian ◽  
Alain Martin

A significant extensive Research & Development work is conducted by Electricite´ de France (EDF) related to the structural integrity re-assessment of the French 900 and 1300 MWe reactor pressure vessels in order to increase their lifetime. Within the framework of this programme, numerous developments have been implemented or are in progress related to the methodology to assess flaws during a pressurized thermal shock (PTS) event. The paper contains three aspects: a short description of the specific French approach for RPV PTS assessment, a presentation of recent improvements on thermalhydraulic, materials and mechanical aspects, and finally an overview of the present R&D programme on thermalhydraulic, materials and mechanical aspects. Regarding the last aspect on present R&D programme, several projects in progress will be shortly described. This overview includes the redefinition of some significant thermalhydraulic transients based on some new three-dimensional CFD computations (focused at the present time on small break LOCA transient), the assessment of vessel materials properties, and the improvement of the RPV PTS structural integrity assessment including several themes such as warm pre-stress (WPS), crack arrest, constraint effect ....


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Koichi Masaki ◽  
Jinya Katsuyama ◽  
Kunio Onizawa

To apply a probabilistic fracture mechanics (PFM) analysis to the structural integrity assessment of a reactor pressure vessel (RPV), a PFM analysis code has been developed at JAEA. Using this PFM analysis code, pascal version 3, the conditional probabilities of crack initiation (CPIs) and fracture for an RPV during pressurized thermal shock (PTS) events have been analyzed. Sensitivity analyses on certain input parameters were performed to clarify their effect on the conditional fracture probability. Comparisons between the conditional probabilities and the temperature margin (ΔTm) based on the current deterministic analysis method were made for various model plant conditions for typical domestic older types of RPVs. From the analyses, a good correlation between ΔTm and the conditional probability of crack initiation was obtained.


Author(s):  
Michael C. Gibson ◽  
Amer Hameed ◽  
John G. Hetherington

Swaging is one method of autofrettage, a means of pre-stressing high-pressure vessels to increase their fatigue lives and load bearing capacity. Swaging achieves the required deformation through physical interference between an oversized mandrel and the bore diameter of the tube, as it is pushed through the tube. A Finite Element model of the swaging process was developed, in ANSYS, and systematically refined, to investigate the mechanism of deformation and subsequent development of residual stresses. A parametric study was undertaken, of various properties such as mandrel slope angle, parallel section length and friction coefficient. It is observed that the axial stress plays a crucial role in the determination of the residual hoop stress and reverse yielding. The model, and results obtained from it, provides a means of understanding the swaging process and how it responds to different parameters. This understanding, coupled with future improvements to the model, potentially allows the swaging process to be refined, in terms of residual stresses development and mandrel driving force.


Author(s):  
Yinsheng Li ◽  
Shumpei Uno ◽  
Jinya Katsuyama ◽  
Terry Dickson ◽  
Mark Kirk

A probabilistic fracture mechanics (PFM) analysis code called PASCAL has been developed by the Japan Atomic Energy Agency to evaluate failure frequencies of Japanese reactor pressure vessels (RPVs) during pressurized thermal shock (PTS) events based on Japanese data and Japanese methods published for or provided in Japanese codes and standards. To verify this code, benchmark analyses were carried out using the FAVOR code, which was developed in the United States and has been utilized in nuclear regulation. The results of these analyses confirmed with great confidence the applicability of PASCAL to failure probability and frequency evaluation of Japanese RPVs. An outline of PASCAL, the benchmark analysis conditions and analysis results are reported in this paper.


Author(s):  
Katsuyuki Shibata ◽  
Kunio Onizawa ◽  
YinSheng Li ◽  
Yasuhiro Kanto ◽  
Shinobu Yoshimura

Based on the failure probability, the flaw acceptance standard of ASME Code Sec. XI is examined with some concerns weather the failure probability is uniform for flaws with various aspect ratios and failure frequencies are small enough. In this paper, the results of preliminary case studies are described on the failure probability of reactor pressure vessels (RPVs) with a surface flaw specified in Sec. XI. PFM code PASCAL was used for case studies. A PTS (Pressurized Thermal Shock) transient prescribed by NRC/EPRI PTS Benchmark Study was used as an applied load. Analysis results showed that the conditional failure probability of a RPV with an initial flaw of acceptable depth depends on the aspect ratio. In the case flaw shapes are close to semi-circular, the failure probability are higher than that of the cases aspect ration are less than 0.6 by one order of magnitude due to the difference of fracture behavior at the surface point. A case study for determining the acceptable flaws based on failure probability was also carried out.


Author(s):  
Yinsheng Li ◽  
Shumpei Uno ◽  
Koichi Masaki ◽  
Jinya Katsuyama ◽  
Terry Dickson ◽  
...  

A probabilistic fracture mechanics (PFM) analysis code PASCAL has been developed by Japan Atomic Energy Agency based on Japanese methods and data to evaluate failure probabilities and failure frequencies of Japanese reactor pressure vessels (RPVs) considering pressurized thermal shock (PTS) events and neutron irradiation embrittlement. To verify PASCAL, we have been performing benchmark analyses by using a PFM code FAVOR which has been developed in the United States and utilized in nuclear regulation. Based on two-year activities, the applicability of PASCAL in failure probability and failure frequency evaluation of Japanese RPVs was confirmed with great confidence. The analysis conditions, approaches and results are given in this paper.


2010 ◽  
Vol 47 (12) ◽  
pp. 1131-1139 ◽  
Author(s):  
Myung Jo JHUNG ◽  
Seok Hun KIM ◽  
Young Hwan CHOI ◽  
Yoon Suk CHANG ◽  
Xiangyuan XU ◽  
...  

Author(s):  
Kunio Onizawa ◽  
Koichi Masaki ◽  
Jinya Katsuyama

In order to apply a probabilistic fracture mechanics (PFM) analysis to the structural integrity assessment of a reactor pressure vessel (RPV), PFM analysis code has been developed at JAEA. Using the PFM analysis code, PASCAL version 3, the conditional probabilities of crack initiation and fracture for an RPV during pressurized thermal shock events have been analyzed. Sensitivity analyses on some input parameters were performed to clarify the effect on the conditional fracture probability. Comparison between the conditional probabilities and temperature margin (ΔTm) from current deterministic analysis method were made for some model plant conditions of domestic typical old-type RPVs. From the analyses, a good correlation between ΔTm and the conditional probability of crack initiation was obtained.


Sign in / Sign up

Export Citation Format

Share Document