Theoretical and Experimental Investigation of Pipe Wall Thinning Detection Using Guided Waves

Author(s):  
Isoharu Nishiguchi ◽  
Fumitoshi Sakata ◽  
Seiichi Hamada

A method to investigate pipe wall thinning using guided waves has been developed for pipes in thermal power generation facilities. In this paper, the reflection coefficient and the transmission coefficient are derived for the torsional waves which propagate along a pipe and a simplified method to predict the waveform is proposed. The predictions of the waveforms by the FEM and a simplified method based on the reflection of torsional waves are also examined by comparing with experimental data.

Author(s):  
Isoharu Nishiguchi ◽  
Seiichi Hamada

In response to the pipe wall thinning damage experienced in power plants in 2004, the Japan Society of Mechanical Engineers (JSME) has started activities to develop technical standards on the pipe wall thinning management. The first edition of the JSME rules on pipe wall thinning management for thermal power generation facilities (JSME S TB1-2006 [1]) was issued in March 2006, and its latest edition will be issued in 2007, which describes the technical requirements to meet the JSME performance-based rules for pipe wall thinning management (JSME S CA-1 2005 [2]). Based on 24,774 inspection data obtained at the thermal power plants in Japan, the latest JSME rules will show the specific attention to the need for inspection of piping systems that are susceptible to the wall thinning damage. The JSME rules describe the selection of thickness measurement locations such as downstream of piping configurations that produce turbulence, downstream of orifices, downstream of control valves, and they describe the periodic inspections including the first inspection to be scheduled taking the wall thinning rate data at the equivalent locations into consideration. The JSME rules stipulate some available inspection methods such as ultrasonic scanning, radiographic profile, eddy current and potential drop technique. This paper presents outline of the JSME rules including basic philosophy, technical requirements on the inspection and testing practices and the relation with the regulations in Japan.


Author(s):  
Shin Yoshino ◽  
Seiichi Hamada ◽  
Manabu Hayakawa

The electrical potential drop technique is one of the promising methods for monitoring the pipe wall thinning. In order to verify this method, preliminary thickness measurements were conducted for uniform and local thinning created on plate specimens. The result showed the electrical potential drop technique had a good performance equal to the ultrasonic testing method. The success in the preliminary tests allowed this technique to be applied to some pipes in thermal power plants in order to monitor the wall thinning and this on-line monitoring has continued for two to three years. It was confirmed that this technique was valid in terms of a long-term durability. Following these results, technical requirements on the potential drop technique were proposed to the JSME (the Japan Society of Mechanical Engineers) Rules on Pipe Wall Thinning Management for Thermal Power Generation Facilities (JSME S TB1-2006) and stipulated in those rules. In this paper, these rules are simply introduced and the on-line monitoring of the pipe wall thinning by means of the electrical potential drop technique is discussed through the results in the plate-specimen-tests and the real-pipe-tests in operating thermal power plants.


2017 ◽  
Vol 7 (2) ◽  
pp. 131
Author(s):  
A. J. Jin ◽  
Y. M. Zhang

This paper presents systematic studies of the renewabale energy [RE] technologies and focuses on thermoelectric (TE) technology. The invention of a new equipment is applied to thermoelectric modules (TEM) and demonstrates important capabilities such as in-situ characterization of I-V curve, P-V curves, and TE efficiency. Many variales are invetsigated in order to maximize the output of TE power. Experimental data show that the TE power output is scalable/ additive for multiple TE systems. Multi-stack structures are invetsigated in order to improve the TE efficiency. One of the hightlights of this paper is to generate a large output of TEPG system up to 1kW power. The TE technology is one of the most important RE technologies that has advantages of being renewable, possessing low-noise/ no-moving parts among other features, and having versatile and special applications with TEM. Several sets of the thermoelectric power generation (TEPG) systems are developed with various TEMs for many different applications. Finally, the TEPG is characterized for the experimental investigation and data analysis, followed by summaries and conclusion based on the data.


Author(s):  
Shin Yoshino ◽  
Seiichi Hamada ◽  
Yoshi Kaieda

The electrical potential drop technique is one of the promising methods for monitoring the pipe wall thinning. In the previous paper [1], it was reported that this technique had a good performance equal to the ultrasonic testing in the preliminary test and that it had a long-term durability under a severe condition on the real pipes in operating thermal power plants. This time one of these pipes was replaced because its thickness approached the threshold. The removed pipe was cut in many pieces and its thickness was measured with calipers at several locations corresponding to where the electrical potential drop technique was applied. This result was compared with the thickness resulted from this technique and the conventional ultrasonic testing that were conducted just before the pipe removal. This comparison led to the conclusion that the accuracy in the electrical potential drop technique was almost equivalent to that in the ultrasonic testing even in the real pipe under a severe condition. In this paper, the accuracy in the electrical potential drop technique is mainly discussed.


2019 ◽  
Vol 50 (5) ◽  
pp. 451-462
Author(s):  
Abhishek Khanchi ◽  
Mani Kanwar Singh ◽  
Harkirat Sandhu ◽  
Satbir Sehgal

Sign in / Sign up

Export Citation Format

Share Document