Mechanical Fatigue of Wall Surface Caused by Liquid Droplet Impingement

Author(s):  
Manabu Satou

Pipe wall thinning caused by water or steam flow was observed associated with oxide layer inside of the pipe. Interaction between oxide formation and corrosion or erosion due to the water or steam flow may be an essential phenomenon of the wall thinning. Thinning rate of the wall therefore depends on the formation of the oxide. In the case of wall thinning caused by liquid droplet impingement (LDI) erosion models, mechanical fatigue of the layers is of interest from estimation of the wall thinning rate. In this paper, from a fundamental point of view, to examine parameters related to adhesion strength of the interface in the model equation of material removal from the wall by multiple droplet impingements, evaluation of adhesion strength between piping material and surface oxide layer was carried out using a laser shock method. Several model oxide layers were prepared at elevated temperatures in oxidizing environments on a carbon steel. Results from the measurements of the adhesive strength of the oxide layer formed on the carbon steel at elevated temperatures, the interface had a comparative strength or less of the yield stress of the carbon steel. It was found that reputation of the loading by laser shots up to 104 times did not affect the adhesive strength so far. A kinetic modeling of the wall thinning caused by the LDI was suggested higher cycle mechanical fatigue.

Author(s):  
Manabu Satou ◽  
Takashi Sato ◽  
Akira Hasegawa

Adhesion strength of oxide layer formed on carbon steel in air at elevated temperature was evaluated using a laser shock method to reveal the influence of the oxide layer on the wall-thinning behavior caused by liquid droplet impingement. The strength of the interface between magnetite and the carbon steel was comparative to the yield stress of the steel or less. It was suggested that formation of the oxide layer reduce the critical velocity, which might result in exfoliation and wall-thinning, compared to without oxide layer.


2009 ◽  
Vol 1215 ◽  
Author(s):  
Manabu Satou

AbstractAdhesive strength of the oxidation layers on carbon steel was evaluated by means of a laser shock method, which uses a pulsed laser to generate shock wave. Oxidation for 200 hours in air created 10-micron-thick magnetite on carbon steel. Typical strength of the layer was evaluated to be about 50MPa at ambient temperature. The adhesive strength was varied from around one-tenth of yield stress to the ultimate tensile strength of the base materials. The adhesive strength of the oxide layer depended on test temperature. It is possible that the adhesive strength becomes an essential parameter for the evaluation of the protective layers.


2016 ◽  
Vol 88 ◽  
pp. 151-157 ◽  
Author(s):  
Nobuyuki Fujisawa ◽  
Takayuki Yamagata ◽  
Keitaro Wada

Author(s):  
Ryo Morita ◽  
Yuta Uchiyama

Liquid droplet impingement erosion (LDI) is defined as an erosion phenomenon caused by high-speed droplet attack in a wet steam flow. Pipe wall thinning due to LDI is sometimes observed in a steam piping system of a power plant. In this study, for more realistic LDI evaluation in the power plant, we conducted LDI experiments in wet steam flow with steam apparatus, and tried to develop a new thinning rate prediction model (LDI model). High speed wet steam flow simulating the actual plant condition was employed in the experiments. As a result, the cushioning effect of liquid film on a material surface was observed and was incorporated into LDI model as a empirical equation with fluid parameter.


Author(s):  
Kimitoshi Yoneda ◽  
Ryo Morita ◽  
Kazutoshi Fujiwara ◽  
Fumio Inada

Flow accelerated corrosion (FAC) and liquid droplet impingement erosion (LDI) are the main pipe wall thinning phenomena in piping system of power plants in Japan. Authors have promoted the development of prediction method to evaluate local thinning trend by FAC/LDI. To apply the method to pipe wall thinning management in power plants, it is required to be transformed into practical tools for easy usage. In Japan, discussion is being made to considerate the introduction of prediction tools into wall thinning management based on wall thickness measurement at present. Authors have simplified their FAC/LDI models to predict wall thinning trend one-dimensionally along piping layout, and applied to actual thinning data of power plants. With PWR’s FAC data and BWR’s LDI data, maximum thinning rate for each pipe elements were roughly predictable with considerable accuracy. Especially for high thinning rate data, which is important in plant management, the model was able to evaluate within the factor of 2. By installing this model, prediction software “FALSET” was developed, equipped with practical functions for the management. With the further verification and improvement of each function, there are prospects for this software to be utilized as a management tool in power plants.


Sign in / Sign up

Export Citation Format

Share Document