Review of ASME III Code Case for the Application of Finite Element Based Limit Load Analysis

Author(s):  
Michael Martin ◽  
Chris Watson ◽  
Keith Wright

The use of finite element based limit load analysis for the assessment of the primary load capacity of a pressure vessel is well established and numerous papers on the subject, including experimental results, have been published in the last decade. Finite element based limit load analysis is often used in the context of NB-3228.1 Limit Analysis to demonstrate a margin against ductile burst as an alternative to satisfaction of the NB-3200 limits on general, local and primary membrane plus bending stress intensity. However, although NB-3200 permits the use of ‘limit analysis’, no specific guidance on the use of finite element methods for this purpose is provided. Other pressure vessel codes, including ASME VIII Division 2 and EN13445 contain explicit guidance on the use of finite element methods for limit load analysis. To address this, a Code Case is currently under development to provide technical guidance on the use of finite element based limit load analysis within the context of NB-3200 assessments. The Code Case provides a step-by-step procedure which guides the analyst in the application of limit load analysis and ensures that a valid analysis has been undertaken. The topics of geometric weakening, yield surface selection, tentative wall thickness, element selection and selection of Sm are accounted for in the Code Case and discussed. This paper provides a detailed review of the Code Case and shows how it can be used in practice.

Author(s):  
Rahul Jain

This paper explores the use of limit load analysis methods for the design of a pressure vessel manway cover as per the ASME boiler and pressure vessel code guidelines. The results of elastic and limit load finite element analysis are discussed for the design. The concept of reference volume consideration along with linear elastic finite element analysis to determine the lower bound limit load has been explored and the results are compared with the non-linear elastic-plastic limit load analysis.


2018 ◽  
Vol 763 ◽  
pp. 892-899 ◽  
Author(s):  
Saul Y. Vazquez-Colunga ◽  
Chin Long Lee ◽  
Gregory A. MacRae

This study sets out to investigate the effect of out-of-plane (OOP) displacements on the monotonic load capacity of gusset plates (GPs) via numerical analyses using finite element methods. Two models were used: a) models with in-plane (INP) actions only; and b) models with both INP and OOP actions. The numerical results show that the load capacity of GPs is reduced with the presence of OOP displacements. For an OOP drift of 2.5%, the reduced capacity ranges from 95% to 80% with an average of 88% of the load capacity when only INP actions were applied.


2006 ◽  
Vol 519-521 ◽  
pp. 949-954 ◽  
Author(s):  
Beong Bok Hwang ◽  
J.H. Shim ◽  
Jung Min Seo ◽  
H.S. Koo ◽  
J.H. Ok ◽  
...  

This paper is concerned with the analysis of the forming load characteristics of a forward-backward can extrusion in both combined and sequence operation. A commercially available finite element program, which is coded in the rigid-plastic finite element method, has been employed to investigate the forming load characteristics. AA 2024 aluminum alloy is selected as a model material. The analysis in the present study is extended to the selection of press frame capacity for producing efficiently final product at low cost. The possible extrusion processes to shape a forward-backward can component with different outer diameters are categorized to estimate quantitatively the force requirement for forming forward-backward can part, forming energy, and maximum pressure exerted on the die-material interfaces, respectively. The categorized processes are composed of combined and/or some basic extrusion processes such as sequence operation. Based on the simulation results about forming load characteristics, the frame capacity of a mechanical press of crank-drive type suitable for a selected process could be determined along with securing the load capacity and with considering productivity. In addition, it is suggested that different load capacities be selected for different dimensions of a part such as wall thickness in forward direction and etc. It is concluded quantitatively from the simulation results that the combined operation is superior to sequence operation in terms of relatively low forming load and thus it leads to low cost for forming equipments. However, it is also known from the simulation results that the precise control of dimensional accuracy is not so easy in combined operation. The results in this paper could be a good reference for analysis of forming process for complex parts and selection of proper frame capacity of a mechanical press to achieve low production cost and thus high productivity.


2001 ◽  
Vol 38 (03) ◽  
pp. 169-176
Author(s):  
L. Belenkiy ◽  
Y. Raskin

This paper examines plastic behavior of typical ship structures, specifically beams, grillages, and plates subjected to predominantly lateral loads. The ultimate loads, determined on the basis of the theorems of limit analysis [1,2], are evaluated using nonlinear finite-element plastic analysis. The relationships between analytical and finite-element models for prediction of ultimate loads of beams, stiffened panels, and grillages are illustrated. It has been shown that the ultimate loads, obtained from the theorems of limit analysis, can be successfully used for strength assessment of stiffened ship structures subjected to lateral loads. The effect of shear force on ultimate load is analyzed using the finite-element method. This paper confirms that in the case of beams and grillages under lateral loading, the ultimate load may characterize the threshold of the load at which a stiffened ship's structure fails by the development of excessive deflections. For plate elements, on the other hand, the plastic deflections represent the permissible limit of external load better than the ultimate limit load.


Acta Numerica ◽  
2003 ◽  
Vol 12 ◽  
pp. 1-125 ◽  
Author(s):  
Ivo Babuška ◽  
Uday Banerjee ◽  
John E. Osborn

In the past few years meshless methods for numerically solving partial differential equations have come into the focus of interest, especially in the engineering community. This class of methods was essentially stimulated by difficulties related to mesh generation. Mesh generation is delicate in many situations, for instance, when the domain has complicated geometry; when the mesh changes with time, as in crack propagation, and remeshing is required at each time step; when a Lagrangian formulation is employed, especially with nonlinear PDEs. In addition, the need for flexibility in the selection of approximating functions (e.g., the flexibility to use non-polynomial approximating functions), has played a significant role in the development of meshless methods. There are many recent papers, and two books, on meshless methods; most of them are of an engineering character, without any mathematical analysis.In this paper we address meshless methods and the closely related generalized finite element methods for solving linear elliptic equations, using variational principles. We give a unified mathematical theory with proofs, briefly address implementational aspects, present illustrative numerical examples, and provide a list of references to the current literature.The aim of the paper is to provide a survey of a part of this new field, with emphasis on mathematics. We present proofs of essential theorems because we feel these proofs are essential for the understanding of the mathematical aspects of meshless methods, which has approximation theory as a major ingredient. As always, any new field is stimulated by and related to older ideas. This will be visible in our paper.


Author(s):  
Barry Millet ◽  
Kaveh Ebrahimi ◽  
James Lu ◽  
Kenneth Kirkpatrick ◽  
Bryan Mosher

Abstract In the ASME Boiler and Pressure Vessel Code, nozzle reinforcement rules for nozzles attached to shells under external pressure differ from the rules for internal pressure. ASME BPVC Section I, Section VIII Division 1 and Section VIII Division 2 (Pre-2007 Edition) reinforcement rules for external pressure are less stringent than those for internal pressure. The reinforcement rules for external pressure published since the 2007 Edition of ASME BPVC Section VIII Division 2 are more stringent than those for internal pressure. The previous rule only required reinforcement for external pressure to be one-half of the reinforcement required for internal pressure. In the current BPVC Code the required reinforcement is inversely proportional to the allowable compressive stress for the shell under external pressure. Therefore as the allowable drops, the required reinforcement increases. Understandably, the rules for external pressure differ in these two Divisions, but the amount of required reinforcement can be significantly larger. This paper will examine the possible conservatism in the current Division 2 rules as compared to the other Divisions of the BPVC Code and the EN 13445-3. The paper will review the background of each method and provide finite element analyses of several selected nozzles and geometries.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Phuong H. Hoang ◽  
Kunio Hasegawa ◽  
Bostjan Bezensek ◽  
Yinsheng Li

The circumferential flaw evaluation procedures in ASME Boiler and Pressure Vessel Code Section XI nonmandatory Appendix C are currently limited to straight pipes under pressure and bending loads without consideration of torsion loading. The Working Group on Pipe Flaw Evaluation of the ASME Boiler and Pressure Vessel Code is developing guidance for considering the effects of torsion by a mean of an equivalent bending moment, which is a square root of sum square combination of bending moment and torsion load with a weighted factor for torsion moment. A torsion weighted factor, Ce, is established in this paper using large strain finite element limit load analysis with elastic perfectly plastic materials. Planar flaws and nonplanar flaws in a 10.75 in. (273 mm) OD pipe are investigated. Additionally, a finite element J-integral calculation is performed for a planar through wall circumferential flaw with elastic plastic materials subjected to bending and torsion load combinations. The proposed Ce factor for planar flaws is intended for use with the ASME B&PV Code Section XI, Appendix C for limit load and Elastic Plastic Fracture Mechanics (EPFM) circumferential planar flaw evaluations.


2006 ◽  
Vol 321-323 ◽  
pp. 724-728
Author(s):  
Nam Su Huh ◽  
Yoon Suk Chang ◽  
Young Jin Kim

The present paper provides plastic limit load solutions for axial and circumferential through-wall cracked pipes based on detailed three-dimensional (3-D) finite element (FE) limit analysis using elastic-perfectly plastic behavior. As a loading condition, both single and combined loadings are considered. Being based on detailed 3-D FE limit analysis, the present solutions are believed to be valuable information for structural integrity assessment of cracked pipes.


Author(s):  
Shiju V. P. George ◽  
Trevor G. Seipp ◽  
Shawn W. Morrison

Equipment nozzle loads essentially originate from sustained (gravity) sources and restraint of the free thermal displacement of the attached piping. A common practice has been to assume that these thermal piping loads develop only secondary stresses. That is, a 1.5Sm [2] check on membrane stress intensities arising from thermal piping loads is typically not performed. The key assumption used in support of this approach has been that these loads decay appreciably with local shell deformation such that the associated stresses are truly self-limiting in nature. This paper illustrates that this assumption may not be appropriate in all instances. A typical pressure vessel and piping configuration is examined. In this example, the associated stresses and deformations developed due to thermal piping loads resulted in significant deformation of the shell arrangement. In static evaluations of local stresses in shells, the ASME Code only offers two classifications that may be applied to stresses resulting from thermal piping loads: primary or secondary. Given these results it may be more reasonable to treat thermal piping load membrane stresses as being primary.


Sign in / Sign up

Export Citation Format

Share Document