A Study of the Conservatism in ASME BPVC Section VIII Division 2 Opening Design for External Pressure

Author(s):  
Barry Millet ◽  
Kaveh Ebrahimi ◽  
James Lu ◽  
Kenneth Kirkpatrick ◽  
Bryan Mosher

Abstract In the ASME Boiler and Pressure Vessel Code, nozzle reinforcement rules for nozzles attached to shells under external pressure differ from the rules for internal pressure. ASME BPVC Section I, Section VIII Division 1 and Section VIII Division 2 (Pre-2007 Edition) reinforcement rules for external pressure are less stringent than those for internal pressure. The reinforcement rules for external pressure published since the 2007 Edition of ASME BPVC Section VIII Division 2 are more stringent than those for internal pressure. The previous rule only required reinforcement for external pressure to be one-half of the reinforcement required for internal pressure. In the current BPVC Code the required reinforcement is inversely proportional to the allowable compressive stress for the shell under external pressure. Therefore as the allowable drops, the required reinforcement increases. Understandably, the rules for external pressure differ in these two Divisions, but the amount of required reinforcement can be significantly larger. This paper will examine the possible conservatism in the current Division 2 rules as compared to the other Divisions of the BPVC Code and the EN 13445-3. The paper will review the background of each method and provide finite element analyses of several selected nozzles and geometries.

2014 ◽  
Vol 598 ◽  
pp. 194-197
Author(s):  
Hong Jun Li ◽  
Qiang Ding ◽  
Xun Huang

Stress linearization is used to define constant and linear through-thickness FEA (Finite Element Analysis) stress distributions that are used in place of membrane and membrane plus bending stress distributions in pressure vessel Design by Analysis. In this paper, stress linearization procedures are reviewed with reference to the ASME Boiler & Pressure Vessel Code Section VIII Division 2 and EN13445. The basis of the linearization procedure is stated and a new method of stress linearization considering selected stress tensors for linearization is proposed.


Author(s):  
Shyam Gopalakrishnan ◽  
Ameya Mathkar

Abstract Most of the heavy thickness boiler and pressure vessel components require heat treatment — in the form of post weld heat treatment (PWHT) and sometimes coupled with local PWHT. It is also a common practice to apply post heating/ intermediate stress relieving/ dehydrogenation heat treatment in case of alloy steels. The heat treatment applied during the various manufacturing stages of boiler and pressure vessel have varying effects on the type of material that is used in fabrication. It is essential to understand the effect of time and temperature on the properties (like tensile and yield strength/ impact/ hardness, etc.) of the materials that are used for fabrication. Considering the temperature gradients involved during the welding operation a thorough understanding of the time-temperature effect is essential. Heat treatments are generally done at varying time and temperatures depending on the governing thickness and the type of materials. The structural effects on the materials or the properties of the materials tends to vary based on the heat treatment. All boiler and pressure vessel Code require that the properties of the material should be intact and meet the minimum Code specification requirements after all the heat treatment operations are completed. ASME Code(s) like Sec I, Section VIII Division 1 and Division 2 and API recommended practices like API 934 calls for simulation heat treatment of test specimen of the material used in fabrication to ascertain whether the intended material used in construction meets the required properties after all heat treatment operations are completed. The work reported in this paper — “Heat treatment of fabricated components and the effect on properties of materials” is an attempt to review the heat treatment and the effect on the properties of materials that are commonly used in construction of boiler and pressure vessel. For this study, simulation heat treatment for PWHT of test specimen for CS/ LAS plate and forging material was carried out as specified in ASME Section VIII Div 1, Div 2 and API 934-C. The results of heat treatment on material properties are plotted and compared. In conclusion recommendations are made which purchaser/ manufacturer may consider for simulation heat treatment of test specimen.


Author(s):  
Yogeshwar Hari ◽  
Ram Munjal ◽  
Chawki Obeid

The main objective of this paper is to improve a jacketed vessel. The jacketed vessel is usually chosen to heat the contents of the vessel. The chamber or annulus contains fluid under pressure to heat the inner vessel contents. The initial over-all dimensions of the vessel are based on the capacity of the stored liquid. The design was in accordance with the ASME Boiler & Pressure Vessel Code, Section VIII, Div 1. The jacketed vessel bottom head and jacket bottom head are being improved to withstand internal and external design pressures. Bottom head of the jacket can be reinforced in one of the three ways, namely: (1) rings which are radial (these rings also create flow for the fluid); (2) attachment of the rings to the bottom jacket head with stays, since rings cannot be physically welded to the bottom jacket; or (3) there is a possibility, the new bottom head and jacketed head combination can be cast, but that would not be economically feasible. This leads to the following six configurations considered in this paper and they are: (1) internal pressure of 50 psi, (2) external pressure + vacuum pressure of 65 psi, (3) reinforcement with 5 rings with external pressure of 65 psi, (4) rings welded with the bottom jacket head with external pressure of 65 psi, (5) welded with stays on ring location (stay diameter of 1 inch) with external pressure of 65 psi, and (6) welded with stays on ring location (stay diameter of 1.5 inch) with external pressure of 65 psi. The pattern of stays chosen for this analysis is one of uniform distribution on ring locations, which are radially situated. The design dimensions based on Code sizing are used to recalculate the stresses for the jacket vessel. The dimensional jacketed vessel is modeled using STAAD III Finite Element Analysis (FEA) software. The design is found to be safe for the specific configuration considered herein with stays.


1986 ◽  
Vol 108 (4) ◽  
pp. 518-520
Author(s):  
A. Selz

There has been a need for some time to provide rules for allowable stresses for short-time and infrequent loading such as earthquake and wind loads in Section VIII, Division 1 of the Boiler and Pressure Vessel Code. Such rules exist in Section VIII, Division 2, in Section III, and in many other Codes. Division 1 has been silent on the subject. This has caused some manufacturers to make their own rules, and some to overdesign their hardware. Neither situation is without problems. Therefore, in 1979 the Boiler and Pressure Vessel Committee undertook to develop rules for Section VIII, Division 1. This work resulted in the addition of paragraph UG-23(d) to the Code, in the Summer, 1983 Addenda. The paragraph permits an increase in general primary membrane stress of 20 percent for earthquake and wind loads for temperatures below the creep regime.


Author(s):  
David J. Dewees

The updating and re-writing of the ASME Boiler and Pressure Vessel Code, Section VIII Division 2 (2007) [1] has introduced several new and unique features. One of these features is the inclusion of specific materials data for use in elastic-plastic analysis of pressure vessel components. Both monotonic and cyclic stress strain curve models are provided, with supporting constants for a range of materials and temperatures. The elastic-perfectly plastic material model has been used in commercial Finite Element (FE) codes for many years to perform limit load and ratcheting analyses. The new material models and data of Section VIII Division 2 (S8D2) include strain hardening and are intended for use in deformation assessments, and for determining cyclic plastic strain ranges in fatigue evaluations. This paper presents one possible implementation of the Code models and data into a standard cyclic hardening model; the multiple backstress, nonlinear kinematic-hardening model of Chaboche, as implemented in the commercial Finite Element program Abaqus, versions 6.8 and later.


Author(s):  
Thomas P. Pastor

Three years ago the major event within Section VIII was the publication of the new Section VIII, Division 2. The development of the new VIII-2 standard dominated Section VIII activity for many years, and a new standard has been well received within the industry. As expected with any new standard, some of the material that was intended to be published in the standard was not ready at the time of publication so numerous revisions have taken place in the last two addenda. This paper will attempt to summarize the major revisions that have taken place in VIII-2 and VIII-1, including a detailed overview of the new Part UIG “Requirements for Pressure Vessels Constructed of Impregnated Graphite”. I have stated in the past that the ASME Boiler and Pressure Vessel Code is a “living and breathing document”, and considering that over 320 revisions were made to VIII-1 and VIII-2 in the past three years, I think I can safely say that the standard is alive and well.


Author(s):  
Isoharu Nishiguchi ◽  
Asao Okamoto ◽  
Norimichi Yamashita ◽  
Mitsuru Aoki

The rules in codes such as the ASME Boiler and Pressure Vessel Code Section III Division 1 and Section VIII Division 2, provide the concept of stress categorization to prevent inelastic failure modes based on the elastic analyses. The categorization of the stresses obtained by the FEM analysis, however, is not always clear and the Three Dimensional FEM Stress Evaluation in JPVRC (TDF committee) has been developed alternative criteria to dispense with the stress categorization. As for the evaluation of the primary plus secondary stress, criteria based on the concept of the Cyclic Yield Area (CYA) have been developed. In this paper, the recent results obtained in the committee are summarized to evaluate the validity and the usability of the criteria.


1987 ◽  
Vol 109 (2) ◽  
pp. 188-192 ◽  
Author(s):  
T. Oikawa ◽  
T. Oka

The generally applicable approximate analysis for pad-type nozzles was shown statistically to be reliable through the use of the design of experiments. The focus was on membrane stresses due to an internal pressure in discontinuous portions of the pad-type nozzle attached to a spherical shell designed in the ASME Boiler and Pressure Vessel (BPV) Code, Section VIII, Division 1. Although Division 1 does not require stress evaluations in discontinuous portions, the results given in this paper show that the maximum membrane stress can be above the yield stress for some generally used materials. This evidence will be reviewed in future work.


Author(s):  
Michael W. Guillot ◽  
Jack E. Helms

Finite element analysis is widely used to model the stresses resulting from penetrations in pressure vessels to accommodate components such as nozzles and man-ways. In many cases a reinforcing pad is required around the nozzle or other component to meet the design requirements of Section VIII, Division 1 or 2, of the ASME Pressure Vessel Code [1]. Several different finite element techniques are currently used for calculating the effects of reinforcing pads on the shell stresses resulting from penetrations for nozzles or man-ways. In this research the stresses near a typical reinforced nozzle on a pressure vessel shell are studied. Finite element analysis is used to model the stresses in the reinforcing pad and shell. The commercially available software package ANSYS is used for the modeling. Loadings on the nozzle are due to combinations of internal pressure and moments to simulate piping attachments. The finite element results are compared to an analysis per Welding Research Council Bulletin 107 [2].


2014 ◽  
Vol 601 ◽  
pp. 84-87 ◽  
Author(s):  
Serban Vasilescu ◽  
Costin Ilinca

The stresses and deflections developed due to all piping loads produce some significant deformation in the nozzles of the pressure vessels. In this paper a spherical pressure vessel with two cylindrical nozzles are analyzed. The stresses in the nozzles are evaluated using two comparative methods: one of them represents the classical way of using the superposition of the axial, bending and torsional loads; the other one is based on the requirements of the ASME Boiler and Pressure Vessel Cod, Section VIII, Division 2 and is developed by a FE analysis. In order to obtain the loads (forces and moments) at the end of the nozzle a specialized finite element program has been used. This program (Coade Caesar 5.30) allows studying the strength and flexibility behavior of the pipes that connect the analyzed nozzle with the rest of the plant. The results obtained are compared in order to find when the using of the classical methods of strength of materials can be used as conservative approaches. The finite element method is applied in order to check the most important load cases that appear during the interaction between pipes and shell. In this respect the sustained (proper gravity loads), expansion (thermal loads) and occasional (wind and seismic loads) are combined in order to check all the requirements of ASME. This study contains also the effect of the pressure trust and the influence of the real geometry of the junction (nozzle-shell) in the peaks of the stresses.


Sign in / Sign up

Export Citation Format

Share Document