In Vitro Study of the Influence of the Aortic Root Geometry on Flow Characteristics of a Prosthetic Heart Valve

Author(s):  
Oleksandr Barannyk ◽  
Satya Karri ◽  
Peter Oshkai

In this paper, performance of aortic heart valve prosthesis in different geometries of the aortic root is investigated experimentally. The objective of this investigation is to establish a set of parameters, which are associated with abnormal flow patterns due to the flow through a prosthetic heart valve implanted to the patients that had certain types of valve diseases prior to the valve replacement. Specific valve diseases, classified into two clinical categories, were correlated with the corresponding changes of aortic root geometry. These categories correspond to aortic valve stenosis and aortic valve insufficiency. The control case that corresponds to the aortic root of a patient without valve disease was used as a reference. Experiments were performed at test conditions corresponding to 70 beats/min, 5.5 L/min target cardiac output and a mean aortic pressure of 100 mmHg. By varying the aortic root geometry, it was possible to investigate corresponding changes in the levels of Reynolds shear stress and establish the possibility of platelet activation and, as a result of that, the formation of blood clots.

2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Oleksandr Barannyk ◽  
Peter Oshkai

In this paper, performance of aortic heart valve prosthesis in different geometries of the aortic root is investigated experimentally. The objective of this investigation is to establish a set of parameters, which are associated with abnormal flow patterns due to the flow through a prosthetic heart valve implanted in the patients that had certain types of valve diseases prior to the valve replacement. Specific valve diseases were classified into two clinical categories and were correlated with the corresponding changes in aortic root geometry while keeping the aortic base diameter fixed. These categories correspond to aortic valve stenosis and aortic valve insufficiency. The control case that corresponds to the aortic root of a patient without valve disease was used as a reference. Experiments were performed at test conditions corresponding to 70 beats/min, 5.5 L/min target cardiac output, and a mean aortic pressure of 100 mmHg. By varying the aortic root geometry, while keeping the diameter of the orifice constant, it was possible to investigate corresponding changes in the levels of Reynolds shear stress and establish the possibility of platelet activation and, as a result of that, the formation of blood clots.


2018 ◽  
Vol 4 (1) ◽  
pp. 185-189
Author(s):  
Sylvia Pfensig ◽  
Sebastian Kaule ◽  
Robert Ott ◽  
Carolin Wüstenhagen ◽  
Michael Stiehm ◽  
...  

AbstractFor the treatment of severe symptomatic aortic valve stenosis, minimally invasive heart valve prostheses have more recently become the lifesaving solution for elderly patients with high operational risk and thus, are often implanted in patients with challenging aortic root configuration. A correct prosthesis deployment and stent adaption to the target region is essential to ensure optimal leaflet performance and long-term prosthesis function. The objective of this study was the development of a suitable in silico setup for structural numerical simulation of a transcatheter aortic valve (TAV) in different cases of clinical relevance. A transcatheter valve prosthesis comprising an unpressurized trileaflet heart valve and an adapted stent configuration was designed. An aortic root (AR) model was developed, based on microcomputed tomography of a native healthy specimen. Using the finite-element analysis (FEA), various loading cases including prosthesis biomechanics with valve opening and closing under physiological pressure ratios throughout a cardiac cycle, prosthesis crimping as well as crimping and release into the developed AR model were simulated. Hyperelastic constitutive law for polymeric leaflet material and superelasticity of shape memory alloys for the self-expanding Nitinol stent structure were implemented into the FEA setup. Calculated performance of the valve including the stent structure demonstrated enhanced leaflet opening and closing as a result of stent deformation and redirected loading. Crimping and subsequent release into the AR model as well as the stent adaption to the target region after expansion proved the suitability of the TAV design for percutaneous application. FEA represented a useful tool for numerical simulation of an entire minimally invasive heart valve prosthesis in relevant clinical scenarios.


2018 ◽  
Vol 4 (1) ◽  
pp. 259-262 ◽  
Author(s):  
Finja Borowski ◽  
Michael Sämann ◽  
Sylvia Pfensig ◽  
Carolin Wüstenhagen ◽  
Robert Ott ◽  
...  

AbstractAn established therapy for aortic valve stenosis and insufficiency is the transcatheter aortic valve replacement. By means of numerical simulation the valve dynamics can be investigated to improve the valve prostheses performance. This study examines the influence of the hemodynamic properties on the valve dynamics utilizing fluidstructure interaction (FSI) compared with results of finiteelement analysis (FEA). FEA and FSI were conducted using a previously published aortic valve model combined with a new developed model of the aortic root. Boundary conditions for a physiological pressurization were based on measurements of ventricular and aortic pressure from in vitro hydrodynamic studies of a commercially available heart valve prosthesis using a pulse duplicator system. A linear elastic behavior was assumed for leaflet material properties and blood was specified as a homogeneous, Newtonian incompressible fluid. The type of fluid domain discretization can be described with an arbitrary Lagrangian-Eulerian formulation. Comparison of significant points of time and the leaflet opening area were used to investigate the valve opening behavior of both analyses. Numerical results show that total valve opening modelled by FEA is faster compared to FSI by a factor of 5. In conclusion the inertia of the fluid, which surrounds the valve leaflets, has an important influence on leaflet deformation. Therefore, fluid dynamics should not be neglected in numerical analysis of heart valve prostheses.


Author(s):  
Alexander Gorodkov ◽  
Gennady Kiknadze ◽  
Andrey Agafonov ◽  
Shota Zhorzholiany ◽  
Ivan Krestinich ◽  
...  

Currently used mechanical heart valve prostheses does not fully restore the function of the valve and require aggressive anticoagulation therapy. One of the reasons leading to the prostheses disfunction is neglecting of hydrodynamic compatibility with the blood flow pattern Studies of the hydrodynamic structure of the blood flow in the heart and aorta are being performed in the Bakulev Center for Cardiovascular surgery since 1992. It has been shown that blood flow, generated in the left ventricle corresponds to the structure of self-organizing tornado-like flows described by the exact solution of unsteady hydrodynamic equations for this class of flows, published in 1986. The previous attempts to adapt the geometry of prosthetic heart valve to the swirling blood flow were not successful since there were no any quantitative criteria of the flow structere. A new model of a mechanical aortic valve — Tornado-compatible valve (TCV) (patent RU 2434604 C1), has the lumen completely free from any kind of obstacles that could disrupt the flow pattern. The valve consists of a body and three cusps which profile is adopted both to the flow in Aorta, and to the flow in Sinuses when the valve is closed. The standard hydrodynamic testing of this valve has shown its significant advantage compared with other valve types. A special testing was developed using the original bench which generates the Tornado-like jet. For this a converging channel was worked out, which profile corresponds to the streamlines of Tornado-like flow, calculated from the exact solution. The resulted jet manifested all principal properties of Tornado: laminar “glass-transparent” jet without any visible perturbations in the flow core. Several valve types were testing using this bench. TCV did not affected the jet structure, and time of water flowing out. The valve was implanted in the pig without anticoagulant administration. According to echocardiography and coagulation control the valve function was satisfactory up to ten months of observation. In the autopsy the luminal surface of outflow part of the left ventricle, and the ascending aorta were free of thrombi and pannus formation. The clinical implantation in the patient with aortic stenosis was performed. The follow-up period is 4 years.


2010 ◽  
Vol 132 (5) ◽  
Author(s):  
C. Marchand ◽  
F. Heim ◽  
B. Durand

Percutaneous aortic valve implantation has become an alternative technique to surgical valve replacement in patients with high risk for surgery. This technique is at its beginning and stents used for valve prostheses remain standard vascular stents. These stents are, however, not designed to undergo heart valve stress. They do not match the aortic environment geometry, and induce exaggerated tissue traumatism. Reduced implant lifetime may therefore be expected. The purpose of the present work is to evaluate in vitro the technical feasibility of noninvasive aortic valve replacement with a novel more specific stent. This stent is especially adapted to its implantation environment with a design that matches the shape of the aortic root while respecting the valve functions. We present a design, a manufacturing process and in vitro performances for the stent under static pressure loading and pulsatile flow. The stent shows good dynamic behavior in keeping position imposed at implantation time and in matching the aortic root dimensions changes. Prosthesis static and dynamic regurgitation are evaluated and show values close to those obtained with other commercially available prostheses.


2015 ◽  
Vol 15 (02) ◽  
pp. 1540009 ◽  
Author(s):  
FRANCESCO DE GAETANO ◽  
PAOLA BAGNOLI ◽  
ADRIANO ZAFFORA ◽  
ANNA PANDOLFI ◽  
MARTA SERRANI ◽  
...  

The potential of polymeric heart valves (PHV) prostheses is to combine the hemodynamic performances of biological valves with the durability of mechanical valves. The aim of this work is to design and develop a new tri-leaflet prosthetic heart valve (HV) made from styrenic block copolymers. A computational finite element model was implemented to optimize the thickness of the leaflets, to improve PHV mechanical and hydrodynamic performances. Based on the model outcomes, 8 prototypes of the designed valve were produced and tested in vitro under continuous and pulsatile flow conditions, as prescribed by ISO 5840 Standard. A specially designed pulse duplicator allowed testing the PHVs at different flow rates and frequency conditions. All the PHVs met the requirements specified in ISO 5840 Standard in terms of both regurgitation and effective orifice area (EOA), demonstrating their potential as HV prostheses.


1989 ◽  
Vol 23 (1) ◽  
pp. 33-37 ◽  
Author(s):  
Lars I. Thulin ◽  
Helmut Reul ◽  
Martin Giersiepen ◽  
Christian L. Olin

Sign in / Sign up

Export Citation Format

Share Document