A Flaw Tolerance Concept for Plant Maintenance Using Virtual Fatigue Crack Growth Curve

Author(s):  
Masayuki Kamaya ◽  
Takao Nakamura

Incorporation of the flaw tolerance concept in plant design and maintenance is discussed in order to consider the reduction in fatigue life due to the high-temperature water environment of class 1 components of NPPs. The flaw tolerance concept has been included in Section XI of the ASME BPVC. The structural factor (safety factor) for the flaw evaluation is considered in the stress, whereas it was considered in the design fatigue curve in Section III of the ASME BPVC. In order to apply the flaw tolerance concept to plant design and maintenance, it is necessary to assume the crack initiation and growth behavior. In this study, first, crack initiation and growth behavior during fatigue tests was reviewed and a relationship between the crack growth and fatigue life was quantified. Then, the safety factor was considered in the crack growth curve. It was shown that the crack size could be correlated to the usage factor and the flaw tolerance concept was reasonably considered in the plant maintenance by using the proposed virtual fatigue crack growth curve.

Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1267
Author(s):  
Chunguo Zhang ◽  
Weizhen Song ◽  
Qitao Wang ◽  
Wen Liu

From tensile overload to shot peening, there have been many attempts to extend the fatigue properties of metals. A key challenge with the cold work processes is that it is hard to avoid generation of harmful effects (e.g., the increase of surface roughness caused by shot peening). Pre-stress has a positive effect on improving the fatigue property of metals, and it is expected to strength Al-alloy without introducing adverse factors. Four pre-stresses ranged from 120 to 183 MPa were incorporated in four cracked extended-compact tension specimens by application of different load based on the measured stress–strain curve. Fatigue crack growth behavior and fractured characteristic of the pre-stressed specimens were investigated systematically and were compared with those of an as-received specimen. The results show that the pre-stress ranged from 120 to 183 MPa significantly improved the fatigue resistance of Al-alloy by comparison with that of the as-received specimen. With increasing pre-stress, the fatigue life first increases, then decrease, and the specimen with pre-stress of 158 MPa has the longest fatigue life. For the manner of pre-stress, no adverse factor was observed for increasing fatigue property, and the induced pre-stress reduced gradually till to disappear during subsequent fatigue cycling.


Author(s):  
Yuichiro Nomura ◽  
Kazuya Tsutsumi ◽  
Hiroshi Kanasaki ◽  
Naoki Chigusa ◽  
Kazuhiro Jotaki ◽  
...  

Although reference fatigue crack growth curves for austenitic stainless steels in air environments and boiling water reactor (BWR) environments were prescribed in JSME S NA1-2002, similar curves for pressurized water reactors (PWR) were not prescribed. In order to propose the reference curve in PWR environment, fatigue tests of austenitic stainless steels in simulated PWR primary water environment were carried out. According to the procedure to determine the reference fatigue crack growth curve of BWR, which of PWR is proposed. The reference fatigue crack growth curve in PWR environment have been determines as a function of stress intensity factor range, Temperature, load rising time and stress ratio.


2003 ◽  
Vol 2003 (0) ◽  
pp. 917-918
Author(s):  
Yuichiro Nomura ◽  
Kazuya Tsutsumi ◽  
Hiroshi Kanasaki ◽  
Morihito Nakano ◽  
Kazuhiro Jotaki ◽  
...  

1994 ◽  
Vol 116 (2) ◽  
pp. 216-225 ◽  
Author(s):  
W.-F. Wu ◽  
C. S. Shin ◽  
J.-J. Shen

In order to predict the fatigue crack growth curve under random loading, an analytical model is proposed in this paper. In addition to the mean crack growth curve, the model also considers the statistical variation of the crack growth curves under the same nature of random loading, as well as the material reliability after certain loading cycles are applied. To check the applicability of the prediction model, several fatigue experiments are performed. After comparing the analytical result with the experimental result, the following conclusions are drawn. (i) Under the same mean value and standard deviation for the stress amplitudes, the fatigue crack growth curves are influenced by the probability density function of the stresses. (ii) An “equivalent constant loading” and a crack closure model lead to better prediction than any other model. (iii) The variation of the crack growth curves can be predicted accurately for shorter crack lengths and conservatively for longer crack lengths. (iv) The prediction of the statistical variation can be improved by modifying the definition of the equivalent constant loading. (v) Fatigue reliability can be reasonably estimated. The foregoing conclusions can be taken into consideration in the design of pressure vessels which are frequently subjected to transients of random nature.


Author(s):  
Yuichiro Nomura ◽  
Katsumi Sakaguchi ◽  
Hiroshi Kanasaki ◽  
Shigeki Suzuki

Reference fatigue crack growth rate curves for austenitic stainless steels in pressurized water reactors (PWR) environments were prescribed in JSME S NA1-2004(1) in Japan. The reference fatigue crack growth curve in PWR environment had been determined as a function of stress intensity factor range, temperature, load rising time and stress ratio. In order to confirm the applicability of the reference fatigue crack growth rate curve under high stress ratio, low rising time and low stress intensity range, fatigue crack propagation tests of austenitic stainless steels 316, 316 weld metal, 304 and 304 weld metal were carried out. It is concluded that the reference fatigue crack growth curve in PWR environment is applicable to predict fatigue crack growth rate of this study test conditions.


Sign in / Sign up

Export Citation Format

Share Document