Further Insights on the Relationship Between J and CTOD for SE(B) and SE(T) Specimens Including Ductile Crack Propagation

Author(s):  
Diego F. B. Sarzosa ◽  
Claudio Ruggieri

In structural assessment procedures the crack driving force is usually estimated numerically based on the J -Integral definition because its determination is well established in many finite element codes. The nuclear industry has extensive fracture toughness data expressed in terms of J-Integral and huge experience with its applications and limitations. On the other hand, material fracture toughness is typically measured by Crack Tip Opening Displacement (CTOD) parameter using the hinge plastic model or double clip gauge technique. The parameter CTOD has a wide acceptance in the Oil and Gas Industry (OGI). Also, the OGI has a lot of past data expressed in terms of CTOD and the people involved are very familiar with this parameter. Furthermore, the CTOD parameter is based on the physical deformation of the crack faces and can be visualized and understood in an easy way. There is a unique relationship between J and CTOD beyond the validity limits of Linear Elastic Fracture Mechanics (LEFM) for stationary cracks. However, if ductile crack propagation occurs, the crack tip deformation profile and stress-strain fields ahead of the crack tip will change significantly when compared to the static case. Thus, the stable crack propagation may change the well established relationship between J and CTOD for stationary cracks compromising the construction of resistance curves J-Δa from CTOD-Δa data or vice versa. This investigation is a complementary study on the relationship between J-Integral and CTOD under ductile crack propagation of a previous work. The theoretical definition of CTOD using the 90° method and the empirical expression used in the standard ASTM E1820 are analyzed under stable crack growth. Plane-strain finite element computations including stationary and growth analysis are conducted for 3P SE(B) and clamped SE(T) specimens having different notch length to specimen width ratios in the range of 0.1–0.5. For the growth analysis, the models are loaded to levels of J consistent to a crack growth resistance curve representative of a typical pipeline steel. A computational cell methodology to model Mode I crack extension in ductile materials is utilized to describe the evolution of J with a. Laboratory testing of an API 5L X70 steel at room temperature using standard, deeply cracked C(T) specimens is used to measure the crack growth resistance curve for the material and to calibrate the key cell parameter defined by the initial void fraction, f 0. The presented results provide additional understanding of the effects of ductile crack growth on the relationship between J-Integral and CTOD for standard and non-standard fracture specimens. Specific procedures for evaluation of CTOD-R curves using SE(T) and SE(B) specimens with direct application to structural integrity assessment and defect analysis in pipelines and risers will be proposed, yielding accurate and robust relations between J-Integral and CTOD.

Author(s):  
Junqiang Wang ◽  
Haitao Wang ◽  
Nan Lin ◽  
Honglian Ma ◽  
Jinlong Wang

The ductile crack propagation behavior of pressure equipment has always been the focus of structural integrity assessment. It is very important to find an effective three-dimensional (3D) damage model, which overcomes the geometric discontinuity and crack tip singularity caused by cracking. The cohesive force model (CZM), which is combined with the extended finite element method (XFEM), can solve element self-reconfiguration near the crack tip and track the crack direction. Based on the theory of void nucleation, growth and coalescence, the Gurson-Tvergaard-Needleman (GTN) damage model is used to study the fracture behavior of metallic materials, and agrees well with the experimental results. Two 3D crack propagation models are used to compare crack propagation behavior of pipe steel from the crack tip shape, fracture critical value of CTOA and CTOD, constraint effect, calculation accuracy, efficiency and mesh dependence etc. The results show that the GTN model has excellent applicability in the analysis of crack tip CTOD/CTOA, constraint effect, tunneling crack and so on, and its accuracy is high. However, the mesh of crack growth region needs to be extremely refined, and the element size is required to be 0.1–0.3mm and the calculation amount is large. The CZM model combined with XFEM has the advantages of high computational efficiency and free crack growth path, and the advantages are obvious in simulating the shear crack, combination crack and fatigue crack propagation. But, the crack tip shape and thickness effect of ductile tearing specimen can not be simulated, and the CTOA value of local crack tip is not accurate.


Author(s):  
Tomoki Shinko ◽  
Masato Yamamoto

Abstract A utilization of a miniature compact tension (Mini-C(T)) specimen is expected to enable effective use of limited remaining surveillance specimens for the structural integrity assessment of a Reactor Pressure Vessel (RPV). For developing a direct fracture toughness evaluation method using Mini-C(T) specimen in the upper-shelf temperature range as well as ductile-brittle transition temperature range, this study is aimed to experimentally characterize the Mini-C(T) specimen’s size effect on ductile crack growth resistance and interpolate its mechanism. Mini-C(T) specimen and 0.5T-C(T) specimen were prepared from a Japanese RPV steel SQV2A, and the ductile crack growth tests were conducted on them at room temperature. As a result, the crack growth resistance of Mini-C(T) and 0.5T-C(T) specimens are comparable if the crack extension Δa is less than 0.5 mm. On the other hand, if Δa exceeds 0.5 mm, the crack growth resistance of Mini-C(T) specimen becomes lower than that of 0.5T-C(T) specimen. The measurements of stretch zone width and depth support the fact that the fracture toughness for ductile crack initiation of Mini-C(T) specimen is lower than that of 0.5T-C(T) specimen. From the rotational (crack mouth opening) deformation of Mini-C(T) specimen was measured by simultaneously measuring load-line and front face displacements. The distance between the crack tip and the rotation center of Mini-C(T) specimen is smaller than that of 0.5T-C(T) specimen during the test. Furthermore, The plastic zone in front of the crack tip reaches the rotation center up to the crack extension of Δa = 0.3 mm on Mini-C(T) specimen, indicating that the mechanism of the specimen size effect of Mini-C(T) specimen is likely a plastic constraint due to the influence of the rotation center locating near the crack tip. This suggests that the specimen size effect of Mini-C(T) specimen on ductile crack growth resistance is expected to be corrected by considering an effect of the plastic constraint.


2016 ◽  
Vol 13 (1) ◽  
pp. 12-17
Author(s):  
Xinhua Ni ◽  
Yunwei Fu ◽  
Xiequan Liu ◽  
Long Zhang

Purpose This paper aims to promote a strength model for TiC-TiB2 composite ceramic with non-ellipsoidal particles bridging. Based on the microstructure of TiC-TiB2 composite ceramic, equivalent average residual stress under particles interaction is calculated with the interact direct derivative estimate. Supposing the crack opening displacement keeps ellipsoidal under the TiB2 particles bridging, crack growth resistance curve is obtained. Design/methodology/approach Composite strength under R-cure with crack unstable propagation is calculated. Based on this model, influences of particles volume fraction, shape, size and other parameters on strength are analyzed. Findings Results indicated that calculated values are consistent to the tested data. Crack growth resistance increases with crack propagation and TiB2 volume fraction. The TiB2 particle does not pull-out entirely even ceramic fracture. Ceramic strength increases with the TiB2 particle volume fraction, the ratio of platelet diameter and thickness, and it reduces with particle thickness. Originality/value Supposing the crack open displacement keeps ellipsoidal under the TiB2 particles bridging, crack growth resistance curve is obtained.


Sign in / Sign up

Export Citation Format

Share Document