Case Study of Shakedown Evaluation of a Shell With Nozzle Based on Elastic-Plastic Analysis

Author(s):  
Jun Shen ◽  
Heng Peng ◽  
Liping Wan ◽  
Yanfang Tang ◽  
Yinghua Liu

In the past, shakedown evaluation was usually based on the elastic method that the sum of the primary and secondary stress should be limited to 3Sm or the simplified elastic-plastic analysis method. The elastic method is just an approximate analysis, and the rigorous evaluation of shakedown normally requires an elastic-plastic analysis. In this paper, using an elastic perfectly plastic material model, the shakedown analysis was performed by a series of elastic-plastic analyses. Taking a shell with a nozzle subjected to parameterized temperature loads as an example, the impact of temperature change on the shakedown load was discussed and the shakedown loads of this structure at different temperature change rates were also obtained. This study can provide helpful references for engineering design.

1981 ◽  
Vol 103 (1) ◽  
pp. 111-115
Author(s):  
D. P. Updike

Design of connections of pipes and pressure vessels on the basis of a calculated maximum elastic stress often proves to be too conservative in the case of ductile materials. Elastic-plastic analysis by the finite element method proves to be too costly. This paper presents an alternative method which reduces the calculations to those of a rotationally symmetric shell subjected to axisymmetric loading. Using this approach approximate elastic-plastic deformations on the meridian passing through the crotch of a tee branch connection of cylindrical shells of equal diameter and thickness are determined. The method is limited to cases of the normal intersection of very thin shells of identical diameter, thickness, and material and to internal pressure loading. Numerical results for the intersection of two shells of R/t equal to 100 are given for an elastic-perfectly plastic material satisfying the von Mises yield condition.


1989 ◽  
Vol 24 (1) ◽  
pp. 45-54 ◽  
Author(s):  
S J Hardy ◽  
A R Gowhari-Anaraki

The finite element method has been used to obtain stress concentration factor data for hollow tubes with axisym-metric internal projections subjected to axial loading. A range of geometries has been considered in the investigation, and the results are complementary to previously published data. Preliminary results from an elastic-plastic analysis of a component with an internal projection are presented. Strain predictions with an elastic-perfectly-plastic material model are found to be between those estimated using linear and Neuber rules for low cycle fatigue life predictions.


Author(s):  
Hany F. Abdalla ◽  
Mohammad M. Megahed ◽  
Maher Y. A. Younan

In this paper the shakedown limit load is determined for a long radius 90-degree pipe bend using two different techniques. The first technique is a simplified technique which utilizes small displacement formulation and elastic-perfectly-plastic material model. The second technique is an iterative based technique which uses the same elastic-perfectly-plastic material model, but incorporates large displacement effects accounting for geometric non-linearity. Both techniques use the finite element method for analysis. The pipe bend is subjected to constant internal pressure magnitudes and cyclic bending moments. The cyclic bending loading includes three different loading patterns namely; in-plane closing, in-plane opening, and out-of-plane bending. The simplified technique determines the shakedown limit load (moment) without the need to perform full cyclic loading simulations or conventional iterative elastic techniques. Instead, the shakedown limit moment is determined by performing two analyses namely; an elastic analysis and an elastic-plastic analysis. By extracting the results of the two analyses, the shakedown limit moment is determined through the calculation of the residual stresses developed in the pipe bend. The iterative large displacement technique determines the shakedown limit moment in an iterative manner by performing a series of full elastic-plastic cyclic loading simulations. The shakedown limit moment output by the simplified technique (small displacement) is used by the iterative large displacement technique as an initial iterative value. The iterations proceed until an applied moment guarantees a structure developed residual stress, at load removal, equals or slightly less than the material yield strength. The shakedown limit moments output by both techniques are used to generate shakedown diagrams of the pipe bend for a spectrum of constant internal pressure magnitudes for the three loading patterns stated earlier. The maximum moment carrying capacity (limit moment) the pipe bend can withstand and the elastic limit are also determined and imposed on the shakedown diagram of the pipe bend. Comparison between the shakedown diagrams generated by the two techniques, for the three loading patterns, is presented.


2013 ◽  
Vol 742 ◽  
pp. 70-75 ◽  
Author(s):  
Mei Ni Su ◽  
Ben Young ◽  
Leroy Gardner

Aluminium alloys are nonlinear metallic materials with continuous stress-strain curves that are not well represented by the simplified elastic, perfectly plastic material model used in many current design specifications. Departing from current practice, the continuous strength method (CSM) is a recently proposed design approach for non-slender aluminium alloy structures with consideration of strain hardening. The CSM is deformation based and employs a base curve to define a continuous relationship between cross-section slenderness and deformation capacity. This paper explains the background and the two key components - (1) the base curve and (2) the strain hardening material model of the continuous strength method. More than 500 test results are used to verify the continuous strength methodas an accurate and consistent design method for aluminium alloy structures.


2011 ◽  
Vol 38 (1) ◽  
pp. 60-70 ◽  
Author(s):  
Mehdi H.K. Kharrazi ◽  
Carlos E. Ventura ◽  
Helmut G.L. Prion

In this paper, the effectiveness of the Modified Plate–Frame Interaction (M-PFI) model is evaluated by comparing its outcomes against those from experimental results obtained from a number of steel plate walls (SPWs) tested at different universities. As a result of the comparison, the M-PFI model was found to provide satisfactory predictions for SPW specimens constructed with steel plates welded to column and beam members. The M-PFI model was able to predict the initial stiffness, as well as to evaluate whether the boundary members of the SPW have sufficient capacity to allow for the infill plate to yield entirely. However, the model was found to underestimate the ultimate capacity of the SPW system mainly because, among other reasons, the material model used for its underlying theory is the elastic – perfectly plastic material model.


2017 ◽  
Vol 62 (2) ◽  
pp. 879-883 ◽  
Author(s):  
M. Zheng ◽  
H. Gao ◽  
H. Teng ◽  
J. Hu ◽  
Z. Tian ◽  
...  

AbstractIn this article, it aims to propose effective approaches for hydro-forming process of bi-metallic composite pipe by assuming plane strain and elastic-perfectly plastic material model. It derives expressions for predicting hydro-forming pressure and residual stress of the forming process of bi-metallic composite pipe. Test data from available experiments is employed to check the model and formulas. It shows the reliability of the proposed model and formulas impersonally.


2012 ◽  
Vol 79 (4) ◽  
Author(s):  
Dorinamaria Carka ◽  
Robert M. McMeeking ◽  
Chad M. Landis

In this technical brief, we compute the J-integral near a crack-tip in an elastic-perfectly-plastic material. Finite deformation is accounted for, and the apparent discrepancies between the prior results of the authors are resolved.


1968 ◽  
Vol 35 (2) ◽  
pp. 372-378 ◽  
Author(s):  
Chi-Hung Mok

It is shown that initial and boundary-value problems involving high-speed elastic-plastic deformation with spherical symmetry can be solved using a finite-difference numerical technique. Numerical solutions for the dynamic expansion of a spherical cavity under a constant pressure are presented to demonstrate the nature and capability of the numerical scheme. While the solution for an elastic material agrees closely with the exact one, the solution for an elastic, perfectly plastic material also receives support from Green’s analytic predictions concerning the motion of the elastic-plastic boundary. At large times, the asymptotic solution of the dynamic elastic-plastic problem is different from the quasi-static solution. This result indicates that the concept of quasi-static approximation may not hold in dynamic plasticity. A nonlinear dependence of the plastic solution on the boundary condition is also observed.


Sign in / Sign up

Export Citation Format

Share Document