Design Equation for Minimum Required Thickness of a Cylindrical Shell Subject to Internal Pressure Based on Von Mises Criterion

Author(s):  
James Lu ◽  
Barry Millet ◽  
Kenneth Kirkpatrick ◽  
Bryan Mosher

Abstract Design equation (4.3.1) for the minimum required thickness of a cylindrical shell subjected to internal pressure in Part 4 “design by rule (DBR)” of the ASME Boiler and Pressure Vessel Code, Section VIII, Division 2 [1] is based on the Tresca Yield Criterion, while design by analysis (DBA) in Part 5 of the Division 2 Code is based on the von Mises Yield Criterion. According to ASME PTB-1 “ASME Section VIII – Division 2 Criteria and Commentary”, the difference in results is about 15% due to use of the two different criteria. Although the von Mises Yield Criterion will result in a shell wall thickness less than that from Tresca Yield Criterion, Part 4 (DBR) of ASME Division 2 adopts the latter for a more convenient design equation. To use the von Mises Criterion in lieu of Tresca to reduce shell wall thickness, one has to follow DBA rules in Part 5 of Division 2, which typically requires detailed numeric analysis performed by experienced stress analysts. This paper proposes a simple design equation for the minimum required thickness of a cylindrical shell subjected to internal pressure based on the von Mises Yield Criterion. The equation is suitable for both thin and thick cylindrical shells. Calculation results from the equation are validated by results from limit load analyses in accordance with Part 5 of ASME Division 2 Code.

Author(s):  
Dipak K. Chandiramani ◽  
Shyam Gopalakrishnan ◽  
Ameya Mathkar

Clause UG-27 of ASME Section VIII Division 1 [1] provides rules for calculating the thickness of shells under internal pressure. Mandatory Appendix-2 of Code [1] provides rules for design of bolted flanged connections. In certain high pressure and high thickness pressure vessels having a cylindrical shell with bolted cover flange, Manufacturers avoid a separate end flange welded to the shell, as the construction becomes bulky. Instead of the same, Manufacturers provide tapped holes in shell wall parallel to axis of the cylindrical shell. The cover is directly bolted to these tapped holes provided in the shell. This type of construction may be economical as compared to welding a conventional flange to the end of the shell. However this type of construction is not covered in the Code [1]. When such tapped holes are provided in the cylindrical shell, generally the total metal thickness provided at the tapped hole location meets UG-27 requirement of the Code [1]. However due to the tapped holes, the thickness from inside surface of vessel to inside surface of tapped hole is less than the required thickness of UG-27. It is therefore required to analyze the stresses due to these tapped holes in the shell thickness to ensure that Code [1] allowable stresses are not exceeded. The work reported in this paper was undertaken to determine the effect of internal pressure on the stresses in a cylindrical shell having tapped holes parallel to axis of the cylindrical shell.


Author(s):  
Barry Millet ◽  
Kaveh Ebrahimi ◽  
James Lu ◽  
Kenneth Kirkpatrick ◽  
Bryan Mosher

Abstract In the ASME Boiler and Pressure Vessel Code, nozzle reinforcement rules for nozzles attached to shells under external pressure differ from the rules for internal pressure. ASME BPVC Section I, Section VIII Division 1 and Section VIII Division 2 (Pre-2007 Edition) reinforcement rules for external pressure are less stringent than those for internal pressure. The reinforcement rules for external pressure published since the 2007 Edition of ASME BPVC Section VIII Division 2 are more stringent than those for internal pressure. The previous rule only required reinforcement for external pressure to be one-half of the reinforcement required for internal pressure. In the current BPVC Code the required reinforcement is inversely proportional to the allowable compressive stress for the shell under external pressure. Therefore as the allowable drops, the required reinforcement increases. Understandably, the rules for external pressure differ in these two Divisions, but the amount of required reinforcement can be significantly larger. This paper will examine the possible conservatism in the current Division 2 rules as compared to the other Divisions of the BPVC Code and the EN 13445-3. The paper will review the background of each method and provide finite element analyses of several selected nozzles and geometries.


1999 ◽  
Vol 121 (4) ◽  
pp. 237-241 ◽  
Author(s):  
M. Mohareb ◽  
D. W. Murray

An analytical expression is derived for the prediction of fully plastic moment capacity of pipes subjected to axial loading and internal pressure. The expression is based on the von Mises yield criterion. The expression predicts pipe moment capacities that are in good agreement with full-scale experimental results. A universal nondimensional moment versus effective axial force-pressure interaction diagram is developed for the design of elevated pipe lines.


Author(s):  
Qi Li ◽  
Rafal Sulwinski ◽  
Charles Boellstorff

Abstract Protection against local failure is one of the integral components in the design-by-analysis requirements in ASME BPVC Section VIII, Division 2. Of the methods offered by the ASME, the Local Strain Limit procedure outlined in 5.3.3.1 is the typical calculation method. However, it has been found that relying on this procedure alone can lead to untenable utilization results if used on certain analyses with varied load paths. The flange described in this study was calculated using “design by analysis” according to Part 5 of ASME BPVC Section VIII, Division 2. The elastic-plastic stress analysis method was used. The flange was loaded with an initial bolt pre-tension and then with internal pressure. During the local failure calculation, an abnormal condition was encountered in the form of a large spike in the history curve of the ratio between plastic strain and limiting triaxial strain. An investigation found that despite being in a stress state below yield stress, some nodes had a non-zero plastic strain and high triaxiality factor. This was caused by the load sequence: first, the bolt pre-tension and then internal pressure. The flange was first bent due to the pre-tension load, and later experienced bending in the opposite direction after the internal pressure load was applied. This resulted in a relatively low stress state with a high triaxiality factor and non-zero plastic strain in certain areas, which then showed high utilization under the local failure strain limit criterion. This paper will discuss how this issue can be avoided by using the strain limit damage calculation procedure 5.3.3.2 outlined in ASME BPVC Section VIII, Division 2.


2003 ◽  
Vol 125 (3) ◽  
pp. 260-265 ◽  
Author(s):  
C. L. Chow ◽  
M. Jie ◽  
S. J. Hu

This paper presents the development of a generalized method to predict forming limits of sheet metals. The vertex theory, which was developed by Sto¨ren and Rice (1975) and recently simplified by Zhu, Weinmann and Chandra (2001), is employed in the analysis to characterize the localized necking (or localized bifurcation) mechanism in elastoplastic materials. The plastic anisotropy of materials is considered. A generalized deformation theory of plasticity is proposed. The theory considers Hosford’s high-order yield criterion (1979), Hill’s quadratic yield criterion and the von Mises yield criterion. For the von Mises yield criterion, the generalized deformation theory reduces to the conventional deformation theory of plasticity, i.e., the J2-theory. Under proportional loading condition, the direction of localized band is known to vary with the loading path at the negative strain ratio region or the left hand side (LHS) of forming limit diagrams (FLDs). On the other hand, the localized band is assumed to be always perpendicular to the major strain at the positive strain ratio region or the right hand side (RHS) of FLDs. Analytical expressions for critical tangential modulus are derived for both LHS and RHS of FLDs. For a given strain hardening rule, the limit strains can be calculated and consequently the FLD is determined. Especially, when assuming power-law strain hardening, the limit strains can be explicitly given on both sides of FLD. Whatever form of a yield criterion is adopted, the LHS of the FLD always coincides with that given by Hill’s zero-extension criterion. However, at the RHS of FLD, the forming limit depends largely on the order of a chosen yield function. Typically, a higher order yield function leads to a lower limit strain. The theoretical result of this study is compared with those reported by earlier researchers for Al 2028 and Al 6111-T4 (Grafand Hosford, 1993; Chow et al., 1997).


Sign in / Sign up

Export Citation Format

Share Document