Application of ASME Code Section XI Appendix L Using 3-D Finite Element Analyses

Author(s):  
Charles Fourcade ◽  
Minji Fong ◽  
James Axline ◽  
Do Jun Shim ◽  
Chris Lohse ◽  
...  

Abstract As part of a fatigue management program for subsequent license renewal, a flaw tolerance evaluation based on ASME Code, Section XI, Appendix L may be performed. The current ASME Code, Section XI, Appendix L flaw tolerance methodology requires determination of the flaw aspect ratio for initial flaw size calculation. The flaw aspect ratios listed in ASME Section XI, Appendix L, Table L-3210-2, for austenitic piping for example, are listed as a function of the membrane-to-gradient cyclic stress ratio. The Code does not explicitly describe how to determine the ratio, especially when utilizing complex finite element analyses (FEA), involving different loading conditions (i.e. thermal transients, piping loads, pressure, etc.). The intent of the paper is to describe the methods being employed to determine the membrane-to-gradient cyclic stress ratios, and the corresponding flaw aspect ratios (a/l) listed in Table L-3210-2, when using finite element analysis methodology. Included will be a sample Appendix L evaluation, using finite element analysis of a pressurized water reactor (PWR) pressurizer surge line, including crack growth calculations for circumferential flaws in stainless steel piping. Based on this example, it has been demonstrated that, unless correctly separated, the membrane-to-gradient cyclic stress ratios can result in extremely long initial flaw lengths, and correspondingly short crack growth durations.

Author(s):  
Daniel Sommerville ◽  
Minghao Qin ◽  
Matthew Walter

As part of license renewal activities, many Boiling Water Reactor utilities must assess the integrity of bolted components within the reactor pressure vessel. Since inspection techniques capable of identifying cracking in the threaded regions of the core plate bolting do not currently exist it is important for flaw tolerance evaluations to be performed with as much accuracy as possible in order to obtain realistic inspection intervals and to assess the degree of redundancy in the bolted joint designs. Both 3-D finite element analysis and handbook linear elastic fracture mechanics solutions are used to assess the flaw tolerance of a core plate bolt design. Consideration of the relevant degradation and crack growth mechanisms is given for both initial crack configuration(s) and crack growth calculations. The 3-D finite element analysis is performed to investigate the effects of various simplifications in the available handbook solutions presented in the literature. The results of the flaw tolerance evaluations using both methods are compared and conclusions drawn regarding the applicability of the available handbook solutions for similar work in the future.


2007 ◽  
Vol 353-358 ◽  
pp. 373-376 ◽  
Author(s):  
Bing Jun Gao ◽  
Xiao Ping Shi ◽  
Hong Yan Liu ◽  
Jin Hong Li

A key problem in engineering application of “design by analysis” approach is how to decompose a total stress field obtained by the finite element analysis into different stress categories defined in the ASME Code III and VIII-2. In this paper, we suggested an approach to separate primary stress with the principle of superposition, in which the structure does not need to be cut into primary structure but analyzed as a whole only with decomposed load. Taking pressurized cylindrical vessel with plate head as example, the approach is demonstrated and discussed in detail. The allowable load determined by the supposed method is a little conservative than that determined by limited load analysis.


2010 ◽  
Vol 7 (1) ◽  
pp. 142-145 ◽  
Author(s):  
P. L. Falkingham ◽  
K. T. Bates ◽  
L. Margetts ◽  
P. L. Manning

The occurrence of sauropod manus-only trackways in the fossil record is poorly understood, limiting their potential for understanding locomotor mechanics and behaviour. To elucidate possible causative mechanisms for these traces, finite-element analyses were conducted to model the indentation of substrate by the feet of Diplodocus and Brachiosaurus . Loading was accomplished by applying mass, centre of mass and foot surface area predictions to a range of substrates to model track formation. Experimental results show that when pressure differs between manus and pes, as determined by the distribution of weight and size of respective autopodia, there is a range of substrate shear strengths for which only the manus (or pes) produce enough pressure to deform the substrate, generating a track. If existing reconstructions of sauropod feet and mass distributions are correct, then different taxa will produce either manus- or pes-only trackways in specific substrates. As a result of this work, it is predicted that the occurrence of manus- or pes-only trackways may show geo-temporal correlation with the occurrence of body fossils of specific taxa.


Sign in / Sign up

Export Citation Format

Share Document