Simulations of the Hinge Flow Fields of a Bileaflet Mechanical Heart Valve Under Physiologic Pulsatile Aortic Conditions

Author(s):  
Hélène A. Simon ◽  
Liang Ge ◽  
Iman Borazjani ◽  
Fotis Sotiropoulos ◽  
Ajit P. Yoganathan

Native heart valves with limited functionality are commonly replaced by prosthetic heart valves. Since the first heart valve replacement in 1960, more than three million valves have been implanted worldwide. The most widely implanted prosthetic heart valve design is currently the bileaflet mechanical heart valve (BMHV), with more than 130,000 implants every year worldwide. However, studies have shown that this valve design can still cause major complications, including hemolysis, platelet activation, and thromboembolic events. Clinical reports and recent in vitro experiments suggest that these thrombogenic complications are associated with the hemodynamic stresses imposed on blood elements by the complex non-physiologic flow induced by the valve, in particular in the hinge region.

Author(s):  
B. Min Yun ◽  
Jingshu Wu ◽  
Cyrus K. Aidun ◽  
Ajit P. Yoganathan

Prosthetic heart valves have been used for over 50 years to replace diseased native valves but still lead to severe complications such as hemolysis, platelet aggregation, and thromboembolic events. The most widely implanted design is the bileaflet mechanical heart valve (BMHV). Most modern BMHV designs have better flow hemodynamics and blood damage performance than their earlier-generation counterparts. However, blood element trauma and thromboembolic events still remain as major complications of current BMHV designs. These problems have been linked to blood element damage caused by non-physiological stresses. These stresses are caused by the complex flow fields that arise due to prosthetic heart valve design, particularly in the leaflet hinge region. In order to reduce the severity of these complications, the blood damage that occurs in flows through prosthetic heart valves must be well understood.


2020 ◽  
Vol 7 (3) ◽  
pp. 90
Author(s):  
Othman Smadi ◽  
Anas Abdelkarim ◽  
Samer Awad ◽  
Thakir D. Almomani

The prosthetic heart valve is vulnerable to dysfunction after surgery, thus a frequent assessment is required. Doppler electrocardiography and its quantitative parameters are commonly used to assess the performance of the prosthetic heart valves and provide detailed information on the interaction between the heart chambers and related prosthetic valves, allowing early detection of complications. However, in the case of the presence of subaortic stenosis, the accuracy of Doppler has not been fully investigated in previous studies and guidelines. Therefore, it is important to evaluate the accuracy of the parameters in such cases to get early detection, and a proper treatment plan for the patient, at the right time. In the current study, a CFD simulation was performed for the blood flow through a Bileaflet Mechanical Heart Valve (BMHV) with concomitant obstruction in the Left Ventricle Outflow Tract (LVOT). The current study explores the impact of the presence of the subaortic on flow patterns. It also investigates the accuracy of (BMHV) evaluation using Doppler parameters, as proposed in the American Society of Echocardiography (ASE) guidelines.


1999 ◽  
Author(s):  
Xiao Gong ◽  
Yi-Ren Woo ◽  
Ajit P. Yoganathan ◽  
Andreas Anayiotos

Abstract Prosthetic heart valve is one of the most successful implantable medical devices. However, introducing better performing and longer lasting prosthetic mechanical heart valves (MHV) into clinical use has been slow because predicting the long term performance of a new valve design is difficult. Although significant progresses in many scientific fronts relevant to prosthetic heart valve development have been achieved, we still have an imperfect understanding of host responses to an implantable medical device and incomplete knowledge in associating hemodynamic characteristics of a valve design to clinical performance. Valve designers, frequently need to over design the valve components to ensure structural safety and thus, sacrifice the opportunity to optimize performance. Complications such as infection, thrombus formation, thromboembolic incidents, and hemorrhage associated to the use of prosthetic valves are still reported and valve designers are working hard to eliminate them. Further advancing scientific knowledge in designing and evaluating prosthetic heart valves is of great interest to many Valve designers and manufacturers. Interfacing Industry and Academic research efforts has been thwarted due to predominantly proprietary issues. Considering the benefits of a better performing MHV to the patients, this industry session will bring researchers from various MHV companies and academic institutions to discuss how to share the results of scientific studies more effectively. This will help accelerate new MHV development without compromising the confidentiality of key valve design information. The issue of standardized MHV testing will also be addressed.


2011 ◽  
Vol 133 (9) ◽  
Author(s):  
L. H. Herbertson ◽  
S. Deutsch ◽  
K. B. Manning

Blood damage and thrombosis are major complications that are commonly seen in patients with implanted mechanical heart valves. For this in vitro study, we isolated the closing phase of a bileaflet mechanical heart valve to study near valve fluid velocities and stresses. By manipulating the valve housing, we gained optical access to a previously inaccessible region of the flow. Laser Doppler velocimetry and particle image velocimetry were used to characterize the flow regime and help to identify the key design characteristics responsible for high shear and rotational flow. Impact of the closing mechanical leaflet with its rigid housing produced the highest fluid stresses observed during the cardiac cycle. Mean velocities as high as 2.4 m/s were observed at the initial valve impact. The velocities measured at the leaflet tip resulted in sustained shear rates in the range of 1500–3500 s−1, with peak values on the order of 11,000–23,000 s−1. Using velocity maps, we identified regurgitation zones near the valve tip and through the central orifice of the valve. Entrained flow from the transvalvular jets and flow shed off the leaflet tip during closure combined to generate a dominant vortex posterior to both leaflets after each valve closing cycle. The strength of the peripheral vortex peaked within 2 ms of the initial impact of the leaflet with the housing and rapidly dissipated thereafter, whereas the vortex near the central orifice continued to grow during the rebound phase of the valve. Rebound of the leaflets played a secondary role in sustaining closure-induced vortices.


1980 ◽  
Vol 102 (1) ◽  
pp. 34-41 ◽  
Author(s):  
G. E. Chetta ◽  
J. R. Lloyd

Although prosthetic heart valves have been in existence for many years, the need for new improved designs and in-vitro evaluation techniques are apparent. This paper presents details on the design considerations, fabrication techniques and heart valve evaluation equipment. A valve performance index is discussed in light of various valve and mock circulatory test section designs. The need for national and indeed international valve evaluation techniques is made apparent.


Author(s):  
B. Min Yun ◽  
Lakshmi P. Dasi ◽  
Cyrus K. Aidun ◽  
Ajit P. Yoganathan

Prosthetic heart valves have been used for over 50 years to replace diseased native valves but still lead to severe complications such as platelet aggregation and thromboembolic events. The most widely implanted design is the bileaflet mechanical heart valve (BMHV). Most modern BMHV designs have better flow hemodynamics and blood damage performance than earlier-generation counterparts. However, blood element trauma and thromboembolic events still remain as major complications of current BMHV designs. These problems have been linked to blood damage caused by non-physiological stresses. These stresses are caused by the complex flow fields that arise due to prosthetic heart valve design. In order to reduce the severity of these complications, the blood damage that occurs in flows through prosthetic heart valves must be well understood.


Author(s):  
C. Hutchison ◽  
P. E. Sullivan ◽  
C. R. Ethier

Each year over 180,000 mechanical heart valves are implanted worldwide, with the bileaflet mechanical heart valve (BiMHV) accounting for approximately 85% of all valve replacements [1,2]. Although much improved from previous valve designs, aortic BiMHV design is far from ideal, and serious complications such as thromboembolism and hemolysis often result. Hemolysis and platelet activation are thought to be caused by turbulent Reynolds shear stresses in the flow [1]. Numerous previous studies have examined aortic BiMHV flow using LDA and two component Particle Image Velocimetry (PIV), and have shown the flow to be complex and three-dimensional [3,4]. Stereoscopic PIV (SPIV) can obtain all three velocity components on a flow plane, and hence has the potential to provide better understanding of three dimensional flow characteristics. The objective of the current study was to use SPIV to measure steady flow, including turbulence properties, downstream of a BiMHV in a modeled aorta. The resulting dataset will be useful for CFD model validation, and the intent is to make it publicly available.


2012 ◽  
Vol 569 ◽  
pp. 487-490
Author(s):  
Liang Liang Wu ◽  
Guo Jiang Wan ◽  
Feng Zhou ◽  
Jie Yang ◽  
Nan Huang

The Bileaflet Mechanical Heart Valve (BMHV) has been the most successful replacement mechanical heart valve, and is currently the most commonly implanted mechanical valve. Although the BMHV is an improvement over previous mechanical heart valves, there are still serious associated complications with its use that must be eliminated. After the completion of the processing and surface modification, heart valve ring and heart valve leaflets constitute a single whole with mechanical method to achieve its function process. In order to ensure that the heart valve is stable and reliable in service, it is particularly important to improve the assembly quality. The theoretical analysis and simulation used of ANSYS Workbench software for the behavior of the heart valve assembly have been done, the experimental results were verified by testing apparatus, which is a helpful tool used to simulate the new structure of the heart valve assembly, and play a certain significance to improve the accuracy of the assembly.


ASAIO Journal ◽  
2000 ◽  
Vol 46 (2) ◽  
pp. 201
Author(s):  
Joon Hock Yeo ◽  
Hai Yao ◽  
Junhong Wang ◽  
Ned HC Hwang

Sign in / Sign up

Export Citation Format

Share Document