Simulation of an Air-Cooled Solar-Assisted Absorption Air Conditioning System

Author(s):  
L. H. Alva Solari ◽  
J. E. González

Abstract This paper investigates the technical feasibility of using a compact, air-cooled, solar-assisted, absorption air conditioning system in Puerto Rico and similar regions. Computer simulations were conducted to evaluate the system’s performance when subjected to dynamic cooling loads. Within the computer model, heat and mass balances are conducted on each component of the system, including the solar collectors, thermal storage tank, the air-cooled condenser, and the air-cooled absorber. Guidance on component design and insight into the effects of such operating factors as ambient air temperature were gained from exercising the simulation model. Comparisons are made with an absorption air conditioning system that uses a cooling tower instead of air-cooled components. The particular absorption system of study is one that uses lithium bromide and water as the absorbent and refrigerant, respectively. The heat input to the absorption system generator is provided by an array of flat plate collectors that are coupled to a thermal storage tank. Systems having nominal cooling capacities of 10.5, 14, and 17.5 kW were considered. Useful information about the number of collectors needed, storage tank volume and efficiency of the overall system is presented.

2002 ◽  
Vol 124 (3) ◽  
pp. 276-282 ◽  
Author(s):  
Luis H. Alva ◽  
Jorge E. Gonza´lez

This paper investigates the technical feasibility of using a compact, air-cooled, solar-assisted, absorption air conditioning system in Puerto Rico and similar regions. Computer simulations were conducted to evaluate the system’s performance when subjected to dynamic cooling loads. Within the computer model, heat and mass balances are conducted on each component of the system, including the solar collectors, thermal storage tank, the air-cooled condenser, and the air-cooled absorber. Guidance on component design and insight into the effects of such operating factors as ambient air temperature were gained from exercizing the simulation model. Comparisons are made with an absorption air conditioning system that uses a cooling tower instead of air-cooled components. The particular absorption system of study is one that uses lithium bromide and water as the absorbent and refrigerant, respectively. The heat input to the absorption system generator is provided by an array of flat plate collectors that are coupled to a thermal storage tank. Systems having nominal cooling capacities of 10.5, 14, and 17.5 kW were considered. Useful information about the number of collectors needed, storage tank volume, and efficiency of the overall system is presented.


Solar Energy ◽  
2002 ◽  
Author(s):  
Jorge E. Gonza´lez ◽  
Luis Humberto Alva S.

This paper investigates the technical feasibility of using a compact, air-cooled, solar absorption air conditioning system when coupled to an innovative array of solar collectors. The particular absorption system of study is a single effect that uses lithium bromide and water as the absorbent and refrigerant fluid pair. The geographical location of interest is Puerto Rico and similar subtropical regions. The heat input to the absorption system generator is provided by an array of novels flat plate solar collectors that integrate the thermal storage component into them. The proposed collectors have a phase change material (PCM) integrated into them as a storage mechanism. The PCM-integrated solar collector eliminates the need of conventional storage tanks reducing cost and space. The present work uses a paraffin-graphite composite as the PCM to increase the conductivity of the PC matrix. The paraffin’s melting point is around 89°C that is appropriate for use in absorption systems. The mathematical model that describes the thermal process in the PCM is presented and differs from the analysis of conventional flat plate solar collectors. The proposed model for the PCM considers the temporal changes but not the spatial variations. The resulting set of equations for the fluid flow, the PCM, and the collector’s surface are solved simultaneously. Results for the collectors’ thermal performance are presented along with the effects of the composition of the PCM material. The thermal performance of an absorption machine coupled to an array of the proposed PCM’s solar collectors was investigated for nominal cooling capacities of 10.5, 14, and 17.5 kW. These cooling loads are suitable for a typical house or a small business building in Caribbean Islands. Computer simulations were conducted to evaluate the overall system’s performance when subjected to dynamic cooling loads. Within the computer model, heat and mass balances are conducted on each component of the system, including the solar collectors, the air-cooled condenser, and the air-cooled absorber. Comparisons are made with an absorption air conditioning system that uses a cooling tower with conventional flat plate collectors instead of air-cooled and PCM components. Useful information about physical dimensions of collectors, number of collectors needed, and efficiency of the overall system is presented.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4159
Author(s):  
Xuan Vien Nguyen

In this study, cold and thermal storage systems were designed and manufactured to operate in combination with the water chiller air-conditioning system of 105.5 kW capacity, with the aim of reducing operating costs and maximizing energy efficiency. The cold storage tank used a mixture of water and 10 wt.% glycerin as a phase-change material (PCM), while water was used as heat transfer fluid (HTF). The cold storage heat exchanger was made of polyvinyl chloride (PVC). On the other hand, the thermal storage tank used water as the storage fluid with a capacity of 50 L of hot water per hour. The thermal storage did not use a pump for water transfer through the heat exchanger, so as to save energy and operating costs. In this paper, the operating parameters of the cold and thermal storage tanks are shown according to the results of experimental research, including the temperatures of cooling and heating load, heat transfer fluid, and cold storage material during the discharge process, as well as the discharge duration. The system assisted the air conditioner in cooling the internship workshop space at the university with an area of 400 m2, contributing to a remarkable reduction in air-conditioning system operating costs during the daytime. Furthermore, the system recovered waste heat from the compressor of the water chiller, and a thermal storage system was successfully built and operated, providing 50 L of hot water at a temperature of 60 °C per hour to serve the everyday needs of school students. This design was suitable for the joint operation of cold and thermal storage tanks and the water chiller air-conditioning system for cooling and heating applications.


2014 ◽  
Vol 57 ◽  
pp. 2600-2608 ◽  
Author(s):  
Cristian Adolfo ◽  
Gilberto A.A. Moreira ◽  
Belkacem Zeghmati ◽  
Antonio P.F. Leite

2000 ◽  
Vol 123 (1) ◽  
pp. 48-50 ◽  
Author(s):  
Z. F. Li ◽  
K. Sumathy

This paper reports the performance of a lithium bromide absorption chiller in a solar powered air conditioning system, when being operated conventionally. The chiller performance based on a modified solar powered absorption air conditioning system which is integrated with a partitioned storage tank has been presented and discussed. It is shown that, by partitioning the storage tank, the chiller performance is not significantly affected, and the solar powered cooling effect can be realized much earlier, achieving a higher total solar cooling COPsystem, compared to the conventional system designs.


Energy ◽  
2021 ◽  
Vol 222 ◽  
pp. 119936
Author(s):  
Hitoi Ono ◽  
Yuichi Ohtani ◽  
Minoru Matsuo ◽  
Toru Yamaguchi ◽  
Ryohei Yokoyama

2018 ◽  
pp. 44-48
Author(s):  
Микола Іванович Радченко ◽  
Євген Іванович Трушляков ◽  
Сергій Анатолійович Кантор ◽  
Богдан Сергійович Портной ◽  
Анатолій Анатолійович Зубарєв

It is justified the necessity of taking into consideration changes in thermal loads on the air conditioning system (heat and moisture treatment of air by cooling it with decreasing temperature and moisture content) in accordance with the current climatic conditions of operation. Since the effect of air cooling depends on the duration of its use and the amount of cold consumption, it is suggested that it be determined by the amount of cold spent per year for air conditioning at the GTU inlet, that is, for annual refrigerating capacity. The example of heat-using air conditioning at the inlet of a gas turbine unite (energy–efficient air conditioning systems) analyzes the annual costs of cooling for cooling ambient air to the temperature of 15 °C by an absorption lithium-bromide chiller and two-stage air cooling: to a temperature of 15 °C in an absorption lithium-bromide chiller and down to temperature 10 °С – in a refrigerant ejector chiller as the stages of a two-stage absorption-ejector chiller, depending on the installed (project) refrigerating capacity of waste heat recovery chiller.It is shown that, based on the varying rate of increment in the annual production of cold (annual refrigeration capacity) due to the change in the thermal load in accordance with current climatic conditions, it is necessary to select such a design thermal load for the air conditioning system (installed refrigeration capacity of chillers), which ensures the achievement of maximum or close to it annual production of cold at a relatively high rate of its increment. It is analyzed the dependence of the increment on the annual refrigerated capacity, relative to the installed refrigeration capacity, on the installed refrigeration capacity, in order to determine the installed refrigeration capacity, which provides the maximum rate of increase in the annual refrigerating capacity (annual production of cold). Based on the results of the research, it is proposed the method for determining the rational thermal load of the air conditioning system (installed – the design refrigeration capacity of the chiller) in accordance with the changing climatic conditions of operation during the year, which provides nearby the maximum annual production of cold at relatively high rates of its growth


2005 ◽  
Vol 16 (4) ◽  
pp. 59-66 ◽  
Author(s):  
V Mittal ◽  
KS Kasana ◽  
NS Thakur

An air-conditioning system utilizing solar energy would generally be more efficient, cost wise, if it was used to provide both heating and cooling requirements in the building it serves. Various solar powered heating systems have been tested extensively, but solar powered air conditioning systems have received very little attention. Solar powered absorption cooling systems can serve both heating and cooling requirements in the building it serves. Many researchers have studied the solar absorption air conditioning system in order to make it economically and technically viable. But still, much more research in this area is needed. This paper will help many researchers working in this area and provide them with fundamental knowledge on absorption systems, and a detailed review on the past efforts in the field of solar absorption cooling systems with the absorption pair of lithium-bromide and water. This knowledge will help them to start the parametric study in order to investigate the influence of key parameters on the overall system performance.


Sign in / Sign up

Export Citation Format

Share Document