Changes to Sustainability of Uranium Carbide Fuel for a Long-Burn Fast Reactor Core

Author(s):  
Hangbok Choi ◽  
Joshua Stone

Advanced reactor concepts such as Generation-IV (Gen-IV) have been studied to fulfill the ambitious long term goals of developing a safe, sustainable, reliable, proliferation-resistant and economic nuclear energy system. The gas-cooled fast reactor (GFR) is a Gen-IV candidate for which a carbide fuel (UC, (U,Pu)C, ThC) has desirable properties in a fuel system using ceramic (SiC) cladding. This study reviews advanced fuel concepts and associated fabrication methods for a GFR, followed by available carbide fuel property data, update of fuel performance code, and assessment of the fuel performance analysis model based on irradiation test results in the Fast Flux Test Facility. The purpose of this study is to develop a fuel performance code for the design and analysis of carbide fuel and to verify the implementation of fuel property models using earlier fuel irradiation tests jointly conducted by US and Switzerland. The comparison of carbide fuel simulation results to the experimental data shows differences in the prediction of fuel temperature and swelling. Considering the limitation and uncertainty of the existing material property data, the results obtained from the updated fuel performance code indicate that more work is required to adjust and update some of the carbide fuel material property models. In the future, the coolant model will also be updated for the flexibility of code application to various advanced fuel analyses. In the long term, the code will be used for the evaluation of advanced carbide fuel with ceramic cladding and the simulation of carbide fuel irradiation tests.

1979 ◽  
Author(s):  
G. TRUMP ◽  
E. JAMES ◽  
R. VETRONE ◽  
R. BECHTEL

2020 ◽  
Vol 1689 ◽  
pp. 012024
Author(s):  
V P Alferov ◽  
N I Geraskin ◽  
A F Kozhin ◽  
A E Kruglikov ◽  
S A Ozherelev ◽  
...  

2019 ◽  
Vol 352 ◽  
pp. 110157 ◽  
Author(s):  
Yinbin Miao ◽  
Nicolas Stauff ◽  
Aaron Oaks ◽  
Abdellatif M. Yacout ◽  
Taek K. Kim

2008 ◽  
Vol 2008 ◽  
pp. 1-7 ◽  
Author(s):  
Mantas Povilaitis ◽  
Egidijus Urbonavičius

An issue of the stratified atmospheres in the containments of nuclear power plants is still unresolved; different experiments are performed in the test facilities like TOSQAN and MISTRA. MASPn experiments belong to the spray benchmark, initiated in the containment atmosphere mixing work package of the SARNET network. The benchmark consisted of MASP0, MASP1 and MASP2 experiments. Only the measured depressurisation rates during MASPn were available for the comparison with calculations. When the analysis was performed, the boundary conditions were not clearly defined therefore most of the attention was concentrated on MASP0 simulation in order to develop the nodalisation scheme and define the initial and boundary conditions. After achieving acceptable agreement with measured depressurisation rate, simulations of MASP1 and MASP2 experiments were performed to check the influence of sprays. The paper presents developed nodalisation scheme of MISTRA for the COCOSYS code and the results of analyses. In the performed analyses, several parameters were considered: initial conditions, loss coefficient of the junctions, initial gradients of temperature and steam volume fraction, and characteristic length of structures. Parametric analysis shows that in the simulation the heat losses through the external walls behind the lower condenser installed in the MISTRA facility determine the long-term depressurisation rate.


2006 ◽  
Author(s):  
Per Bakke ◽  
Andreas Fischersworring-Bunk ◽  
Isabelle de Lima ◽  
Hans Lilholt ◽  
Ingemar Bertilsson ◽  
...  

Author(s):  
S. Varatharajan ◽  
K. V. Sureshkumar ◽  
K. V. Kasiviswanathan ◽  
G. Srinivasan

The second stage of Indian nuclear programme envisages the deployment of fast reactors on a large scale for the effective use of India’s limited uranium reserves. The Fast Breeder Test Reactor (FBTR) at Kalpakkam is a loop type, sodium cooled fast reactor, meant as a test bed for the fuels and structural materials for the Indian fast reactor programme. The reactor was made critical with a unique high plutonium MK-I carbide fuel (70% PuC+30%UC). Being a unique untested fuel of its kind, it was decided to test it as a driver fuel, with conservative limits on Linear Heat Rating and burn-up, based on out-of-pile studies. FBTR went critical in Oct 1985 with a small core of 23 MK-I fuel subassemblies. The Linear Heat Rating and burn-up limits for the fuel were conservatively set at 250 W/cm & 25 GWd/t respectively. Based on out-of-pile simulation in 1994, it was possible to raise the LHR to 320 W/cm. It was decided that when the fuel reaches the target burn-up of 25 GWd/t, the MK-I core would be progressively replaced with a larger core of MK-II carbide fuel (55% PuC+45%UC). Induction of MK-II subassemblies was started in 1996. However, based on the Post-Irradiation Examination (PIE) of the MK-I fuel at 25, 50 & 100 GWd/t, it became possible to enhance the burn-up of the MK-I fuel to 155 GWd/t. More than 900 fuel pins of MK-I composition have reached 155 GWd/t without even a single failure and have been discharged. One subassembly (61 pins) was taken to 165 GWd/t on trial basis, without any clad failure. The core has been progressively enlarged, adding MK-I subassemblies to compensate for the burn-up loss of reactivity and replacement of discharged subassemblies. The induction of MK-II fuel was stopped in 2003. One test subassembly simulating the composition of the MOX fuel (29% PuO2) to be used in the 500 MWe Prototype Fast Breeder Reactor was loaded in 2003. It is undergoing irradiation at 450 W/cm, and has successfully seen a burn-up of 92.5 GWd/t. In 2006, it was proposed to test high Pu MOX fuel (44% PuO2), in order to validate the fabrication and fuel cycle processes developed for the power reactor MOX fuel. Eight MOX subassemblies were loaded in FBTR core in 2007. The current core has 27 MK-I, 13 MK-II, eight high Pu MOX and one power reactor MOX fuel subassemblies. The reactor power has been progressively increased from 10.5 MWt to 18.6 MWt, due to the progressive enlargement of the core. This paper presents the evolution of the core based on the progressive enhancement of the burn-up limit of the unique high Pu carbide fuel.


1970 ◽  
Vol 9 (3) ◽  
pp. 326-337 ◽  
Author(s):  
A. Boltax ◽  
P. Murray ◽  
A. Biancheria

Author(s):  
Andreas Neumann

DLR operates the High Vacuum Plume Test Facility Göttingen – Electric Thrusters (STG-ET). This electric propulsion test facility has now accumulated several years of EP-thruster testing experience. Special features tailored to electric space propulsion testing like a large vacuum chamber mounted on a low vibration foundation, a beam dump target with low sputtering, and a performant pumping system characterize this facility. The vacuum chamber is 12.2m long and has a diameter of 5m. With respect to accurate thruster testing, the design focus is on accurate thrust measurement, plume diagnostics, and plume interaction with spacecraft components. Electric propulsion thrusters have to run for thousands of hours, and with this the facility is prepared for long-term experiments. This paper gives an overview of the facility, and shows some details of the vacuum chamber, pumping system, diagnostics, and experiences with these components.


Sign in / Sign up

Export Citation Format

Share Document