scholarly journals Fabrication of hard x-ray zone plates with high aspect ratio using metal-assisted chemical etching

Author(s):  
Kenan Li ◽  
Michael J. Wojcik ◽  
Ralu Divan ◽  
Leonidas E. Ocola ◽  
Bing Shi ◽  
...  
Micromachines ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 301 ◽  
Author(s):  
Rabia Akan ◽  
Thomas Frisk ◽  
Fabian Lundberg ◽  
Hanna Ohlin ◽  
Ulf Johansson ◽  
...  

Zone plates are diffractive optics commonly used in X-ray microscopes. Here, we present a wet-chemical approach for fabricating high aspect ratio Pd/Si zone plate optics aimed at the hard X-ray regime. A Si zone plate mold is fabricated via metal-assisted chemical etching (MACE) and further metalized with Pd via electroless deposition (ELD). MACE results in vertical Si zones with high aspect ratios. The observed MACE rate with our zone plate design is 700 nm/min. The ELD metallization yields a Pd density of 10.7 g/cm 3 , a value slightly lower than the theoretical density of 12 g/cm 3 . Fabricated zone plates have a grid design, 1:1 line-to-space-ratio, 30 nm outermost zone width, and an aspect ratio of 30:1. At 9 keV X-ray energy, the zone plate device shows a first order diffraction efficiency of 1.9%, measured at the MAX IV NanoMAX beamline. With this work, the possibility is opened to fabricate X-ray zone plates with low-cost etching and metallization methods.


RSC Advances ◽  
2017 ◽  
Vol 7 (71) ◽  
pp. 45101-45106 ◽  
Author(s):  
Gangqiang Dong ◽  
Yurong Zhou ◽  
Hailong Zhang ◽  
Fengzhen Liu ◽  
Guangyi Li ◽  
...  

High aspect ratio silicon nanowires (SiNWs) prepared by metal-assisted chemical etching were passivated by using catalytic chemical vapor deposition (Cat-CVD).


2012 ◽  
Vol 1512 ◽  
Author(s):  
Jian-Wei Ho ◽  
Qixun Wee ◽  
Jarrett Dumond ◽  
Li Zhang ◽  
Keyan Zang ◽  
...  

ABSTRACTA combinatory approach of Step-and-Flash Imprint Lithography (SFIL) and Metal-Assisted Chemical Etching (MacEtch) was used to generate near perfectly-ordered, high aspect ratio silicon nanowires (SiNWs) on 4" silicon wafers. The ordering and shapes of SiNWs depends only on the SFIL nanoimprinting mould used, thereby enabling arbitary SiNW patterns not possible with nanosphere and interference lithography (IL) to be generated. Very densely packed SiNWs with periodicity finer than that permitted by conventional photolithography can be produced. The height of SiNWs is, in turn, controlled by the etching duration. However, it was found that very high aspect ratio SiNWs tend to be bent during processing. Hexagonal arrays of SiNW with circular and hexagonal cross-sections of dimensions 200nm and less were produced using pillar and pore patterned SFIL moulds. In summary, this approach allows highlyordered SiNWs to be fabricated on a wafer-level basis suitable for semiconductor device manufacturing.


2002 ◽  
Author(s):  
Ralu Divan ◽  
Derrick C. Mancini ◽  
Nicolai A. Moldovan ◽  
Barry P. Lai ◽  
Lahsen Assoufid ◽  
...  

2014 ◽  
Vol 24 (12) ◽  
pp. 125026 ◽  
Author(s):  
Katherine Booker ◽  
Maureen Brauers ◽  
Erin Crisp ◽  
Shakir Rahman ◽  
Klaus Weber ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document