scholarly journals Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics

2006 ◽  
Vol 11 (4) ◽  
pp. 041129 ◽  
Author(s):  
Bernard Choi ◽  
Julio C. Ramirez-San-Juan ◽  
Justin Lotfi ◽  
J. Stuart Nelson
2011 ◽  
Vol 300 (2) ◽  
pp. F319-F329 ◽  
Author(s):  
Niels-Henrik Holstein-Rathlou ◽  
Olga V. Sosnovtseva ◽  
Alexey N. Pavlov ◽  
William A. Cupples ◽  
Charlotte Mehlin Sorensen ◽  
...  

Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular pressure and flow. Nephrons interact by exchanging electrical signals conducted electrotonically through cells of the vascular wall, leading to synchronization of the TGF-mediated oscillations. Experimental studies of these interactions have been limited to observations on two or at most three nephrons simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50–100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic techniques for extracting the desired data and for examining them for evidence of nephron synchronization. Synchronized TGF oscillations were detected in pairs or triplets of nephrons. The amplitude and the frequency of the oscillations changed with time, as did the patterns of synchronization. Synchronization may take place among nephrons not immediately adjacent on the surface of the kidney.


PLoS ONE ◽  
2014 ◽  
Vol 9 (9) ◽  
pp. e105879 ◽  
Author(s):  
Alexey R. Brazhe ◽  
Donald J. Marsh ◽  
Niels-Henrik Holstein-Rathlou ◽  
Olga Sosnovtseva

2016 ◽  
Vol 94 (11) ◽  
pp. 969-975 ◽  
Author(s):  
Wei Li ◽  
Nathan W. Kuehne ◽  
Erin Dallin ◽  
Reuven Gordon ◽  
Fraser Hof

Acetyl amantadine (AcAm) is produced from amantadine (Am) in vivo upon catalysis by spermidine/spermine N1-acetyl transferase (SSAT). SSAT is a biomarker for multiple aggressive cancers, and the analysis of AcAm in urine has been promoted as a proxy measure for the early detection of cancer. We report here the development and optimization of cucurbit[7]uril–dye pair based indicator displacement assay (IDA) for the detection of AcAm in solution. In deionized water, using Rhodamine B as the dye, the limit of detection of AcAm was 0.087 μM with a linear response range from 0 to 1 μM. Using berberine as the dye, the limit of detection was 0.077 μM with the same range of linear response. Our efforts and difficulties in translating this assay to function in human urine are also described. We achieve a partial response of the berberine IDA to the presence of AcAm in urine that has undergone a simple PD-10 desalting step.


2017 ◽  
Vol 10 (05) ◽  
pp. 1743005 ◽  
Author(s):  
Alexey N. Pavlov ◽  
Arkady S. Abdurashitov ◽  
Olga N. Pavlova ◽  
Maria V. Ulanova ◽  
Anastasia A. Bodrova ◽  
...  

Based on the laser speckle contrast imaging (LSCI) and the multiscale entropy (MSE), we study in this work the blood flow dynamics at the levels of cerebral veins and the surrounding network of microcerebral vessels. We discuss how the phenylephrine-related acute peripheral hypertension is reflected in the cerebral circulation and show that the observed changes are scale-dependent, and they are significantly more pronounced in microcerebral vessels, while the macrocerebral dynamics does not demonstrate authentic inter-group distinctions. We also consider the permeability of blood–brain barrier (BBB) and study its opening caused by sound exposure. We show that alterations associated with the BBB opening can be revealed by the analysis of blood flow at the level of macrocerebral vessels.


Sign in / Sign up

Export Citation Format

Share Document