Erratum: Study on the in vitro and in vivo activation of rat hepatic stellate cells by Raman spectroscopy

2007 ◽  
Vol 12 (5) ◽  
pp. 059801
Author(s):  
Aiguo Shen ◽  
Zhangxiu Liao ◽  
Hui Wang ◽  
Iiho Goan ◽  
Yong Wu ◽  
...  
2007 ◽  
Vol 12 (3) ◽  
pp. 034003 ◽  
Author(s):  
Aiguo Shen ◽  
Zhangxiu Liao ◽  
Hui Wang ◽  
Iiho Goan ◽  
Yong Wu ◽  
...  

2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Zhemin Shi ◽  
Kun Zhang ◽  
Ting Chen ◽  
Yu Zhang ◽  
Xiaoxiao Du ◽  
...  

AbstractThe excessive accumulation of extracellular matrix (ECM) is a key feature of liver fibrosis and the activated hepatic stellate cells (HSCs) are the major producer of ECM proteins. However, the precise mechanisms and target molecules that are involved in liver fibrosis remain unclear. In this study, we reported that activating transcription factor 3 (ATF3) was over-expressed in mice and human fibrotic livers, in activated HSCs and injured hepatocytes (HCs). Both in vivo and in vitro study have revealed that silencing ATF3 reduced the expression of pro-fibrotic genes and inhibited the activation of HSCs, thus alleviating the extent of liver fibrosis, indicating a potential protective role of ATF3 knockdown. However, ATF3 was not involved in either the apoptosis or proliferation of HCs. In addition, our data illustrated that increased nuclear localization of ATF3 promoted the transcription of fibrogenic genes and lnc-SCARNA10, which functioned as a novel positive regulator of TGF-β signaling in liver fibrogenesis by recruiting SMAD3 to the promoter of these genes. Interestingly, further study also demonstrated that lnc-SCARNA10 promoted the expression of ATF3 in a TGF-β/SMAD3-dependent manner, revealing a TGF-β/ATF3/lnc-SCARNA10 axis that contributed to liver fibrosis by activating HSCs. Taken together, our data provide a molecular mechanism implicating induced ATF3 in liver fibrosis, suggesting that ATF3 may represent a useful target in the development of therapeutic strategies for liver fibrosis.


2013 ◽  
Vol 58 ◽  
pp. S59-S60
Author(s):  
F.J. Cubero ◽  
G. Zhao ◽  
M. Hatting ◽  
Y.A. Nevzorova ◽  
F. Schaefer ◽  
...  

2014 ◽  
pp. n/a-n/a ◽  
Author(s):  
Chun-xiao Pan ◽  
Fan-rong Wu ◽  
Xiao-yu Wang ◽  
Jie Tang ◽  
Wen-fan Gao ◽  
...  

2003 ◽  
Vol 285 (3) ◽  
pp. G652-G660 ◽  
Author(s):  
H. Hendrickson ◽  
S. Chatterjee ◽  
S. Cao ◽  
M. Morales Ruiz ◽  
W. C. Sessa ◽  
...  

Diminished endothelial nitric oxide (NO) synthase (eNOS)-derived NO production from the hepatic vascular endothelium contributes to hepatic vasoconstriction in portal hypertension. The aim of this study was to examine the mechanism of this process by testing the influence of a constitutively active form of eNOS (S1179DeNOS) in both primary and propagated liver cells in vitro and in the sham and bile duct ligated (BDL) rat liver in vivo, using an adenoviral vector encoding green fluorescent protein (AdGFP) and S1179DeNOS (AdS1179DeNOS). AdS1179DeNOS transduction augmented basal and agonist-stimulated NO generation in nonparenchymal liver cells. Sham rats transduced in vivo with AdS1179DeNOS evidenced a decreased pressor response to incremental doses of the vasoconstrictor methoxamine compared with sham rats transduced with AdGFP. However, BDL rats transduced with AdS1179DeNOS did not display improved vasodilatory responses as evidenced by similar flow-dependent pressure increases to that observed in BDL rats transduced with AdGFP, despite similar levels of viral transgene expression. We next examined the influence of the eNOS inhibitory protein caveolin on S1179DeNOS dysfunction in cirrhotic liver. Immunogold electron microscopic analysis of caveolin in BDL liver demonstrated prominent expression not only in liver endothelial cells, but also in hepatic stellate cells. In vitro studies in the LX2 hepatic stellate cell line demonstrate that caveolin precipitates recombinant S1179DeNOS in LX2 cells, that recombinant S1179DeNOS coprecipitates caveolin, and that binding is enhanced in the presence of overexpression of caveolin. Furthermore, caveolin overexpression inhibits recombinant S1179DeNOS activity. These studies indicate that recombinant S1179DeNOS protein functions appropriately in normal liver cells and tissue but evidences dysfunction in the cirrhotic rat liver and that caveolin expression and inhibition in BDL nonparenchymal cells, including hepatic stellate cells, may account for this dysfunction.


2020 ◽  
Vol 20 (1) ◽  
pp. 25-37
Author(s):  
Haleigh B. Eubanks ◽  
Elise G. Lavoie ◽  
Jessica Goree ◽  
Jeffrey A. Kamykowski ◽  
Neriman Gokden ◽  
...  

Hepatic stellate cells (HSC) are critical effector cells of liver fibrosis. In the injured liver, HSC differentiate into a myofibrobastic phenotype. A critical feature distinguishing myofibroblastic from quiescent HSC is cytoskeletal reorganization. Soluble NSF attachment receptor (SNARE) proteins are important in trafficking of newly synthesized proteins to the plasma membrane for release into the extracellular environment. The goals of this project were to determine the expression of specific SNARE proteins in myofibroblastic HSC and to test whether their alteration changed the HSC phenotype in vitro and progression of liver fibrosis in vivo. We found that HSC lack the t-SNARE protein, SNAP-25, but express a homologous protein, SNAP-23. Downregulation of SNAP-23 in HSC induced reduction in polymerization and disorganization of the actin cytoskeleton associated with loss of cell movement. In contrast, reduction in SNAP-23 in mice by monogenic deletion delayed but did not prevent progression of liver fibrosis to cirrhosis. Taken together, these findings suggest that SNAP-23 is an important regular of actin dynamics in myofibroblastic HSC, but that the role of SNAP-23 in the progression of liver fibrosis in vivo is unclear.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 290 ◽  
Author(s):  
Xinlei Li ◽  
Ruju Chen ◽  
Sherri Kemper ◽  
David R Brigstock

During chronic liver injury, hepatic stellate cells (HSC) undergo activation and are the principal cellular source of collagenous scar. In this study, we found that activation of mouse HSC (mHSC) was associated with a 4.5-fold increase in extracellular vesicle (EV) production and that fibrogenic gene expression (CCN2, Col1a1) was suppressed in Passage 1 (P1; activated) mHSC exposed to EVs from Day 4 (D4; relatively quiescent) mHSC but not to EVs from P1 mHSC. Conversely, gene expression (CCN2, Col1a1, αSMA) in D4 mHSC was stimulated by EVs from P1 mHSC but not by EVs from D4 mHSC. EVs from Day 4 mHSC contained only 46 proteins in which histones and keratins predominated, while EVs from P1 mHSC contained 337 proteins and these were principally associated with extracellular spaces or matrix, proteasome, collagens, vesicular transport, metabolic enzymes, ribosomes and chaperones. EVs from the activated LX-2 human HSC (hHSC) line also promoted fibrogenic gene expression in D4 mHSC in vitro and contained 524 proteins, many of which shared identity or had functional overlap with those in P1 mHSC EVs. The activation-associated changes in production, function and protein content of EVs from HSC likely contribute to the regulation of HSC function in vivo and to the fine-tuning of fibrogenic pathways in the liver.


Sign in / Sign up

Export Citation Format

Share Document