Inhibition of ASICs reduces rat hepatic stellate cells activity and liver fibrosis: An in vitro and in vivo study

2014 ◽  
pp. n/a-n/a ◽  
Author(s):  
Chun-xiao Pan ◽  
Fan-rong Wu ◽  
Xiao-yu Wang ◽  
Jie Tang ◽  
Wen-fan Gao ◽  
...  
2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Zhemin Shi ◽  
Kun Zhang ◽  
Ting Chen ◽  
Yu Zhang ◽  
Xiaoxiao Du ◽  
...  

AbstractThe excessive accumulation of extracellular matrix (ECM) is a key feature of liver fibrosis and the activated hepatic stellate cells (HSCs) are the major producer of ECM proteins. However, the precise mechanisms and target molecules that are involved in liver fibrosis remain unclear. In this study, we reported that activating transcription factor 3 (ATF3) was over-expressed in mice and human fibrotic livers, in activated HSCs and injured hepatocytes (HCs). Both in vivo and in vitro study have revealed that silencing ATF3 reduced the expression of pro-fibrotic genes and inhibited the activation of HSCs, thus alleviating the extent of liver fibrosis, indicating a potential protective role of ATF3 knockdown. However, ATF3 was not involved in either the apoptosis or proliferation of HCs. In addition, our data illustrated that increased nuclear localization of ATF3 promoted the transcription of fibrogenic genes and lnc-SCARNA10, which functioned as a novel positive regulator of TGF-β signaling in liver fibrogenesis by recruiting SMAD3 to the promoter of these genes. Interestingly, further study also demonstrated that lnc-SCARNA10 promoted the expression of ATF3 in a TGF-β/SMAD3-dependent manner, revealing a TGF-β/ATF3/lnc-SCARNA10 axis that contributed to liver fibrosis by activating HSCs. Taken together, our data provide a molecular mechanism implicating induced ATF3 in liver fibrosis, suggesting that ATF3 may represent a useful target in the development of therapeutic strategies for liver fibrosis.


2020 ◽  
Vol 20 (1) ◽  
pp. 25-37
Author(s):  
Haleigh B. Eubanks ◽  
Elise G. Lavoie ◽  
Jessica Goree ◽  
Jeffrey A. Kamykowski ◽  
Neriman Gokden ◽  
...  

Hepatic stellate cells (HSC) are critical effector cells of liver fibrosis. In the injured liver, HSC differentiate into a myofibrobastic phenotype. A critical feature distinguishing myofibroblastic from quiescent HSC is cytoskeletal reorganization. Soluble NSF attachment receptor (SNARE) proteins are important in trafficking of newly synthesized proteins to the plasma membrane for release into the extracellular environment. The goals of this project were to determine the expression of specific SNARE proteins in myofibroblastic HSC and to test whether their alteration changed the HSC phenotype in vitro and progression of liver fibrosis in vivo. We found that HSC lack the t-SNARE protein, SNAP-25, but express a homologous protein, SNAP-23. Downregulation of SNAP-23 in HSC induced reduction in polymerization and disorganization of the actin cytoskeleton associated with loss of cell movement. In contrast, reduction in SNAP-23 in mice by monogenic deletion delayed but did not prevent progression of liver fibrosis to cirrhosis. Taken together, these findings suggest that SNAP-23 is an important regular of actin dynamics in myofibroblastic HSC, but that the role of SNAP-23 in the progression of liver fibrosis in vivo is unclear.


2021 ◽  
Vol 22 (24) ◽  
pp. 13354
Author(s):  
Seita Kataoka ◽  
Atsushi Umemura ◽  
Keiichiro Okuda ◽  
Hiroyoshi Taketani ◽  
Yuya Seko ◽  
...  

Chronic liver injury may result in hepatic fibrosis, which can progress to cirrhosis and eventually liver failure. There are no drugs that are specifically approved for treating hepatic fibrosis. The natural product honokiol (HNK), a bioactive compound extracted from Magnolia grandiflora, represents a potential tool in the management of hepatic fibrosis. Though HNK has been reported to exhibit suppressive effects in a rat fibrosis model, the mechanisms accounting for this suppression remain unclear. In the present study, the anti-fibrotic effects of HNK on the liver were evaluated in vivo and in vitro. In vivo studies utilized a murine liver fibrosis model, in which fibrosis is induced by treatment with carbon tetrachloride (CCl4). For in vitro studies, LX-2 human hepatic stellate cells (HSCs) were treated with HNK, and expression of markers of fibrosis, cell viability, the transforming growth factor-β (TGF-β1)/SMAD signaling pathway, and autophagy were analyzed. HNK was well tolerated and significantly attenuated CCl4-induced liver fibrosis in vivo. Moreover, HNK decreased HSC activation and collagen expression by downregulating the TGF-β1/SMAD signaling pathway and autophagy. These results suggest that HNK is a new potential candidate for the treatment of hepatic fibrosis through suppressing both TGF-β1/SMAD signaling and autophagy in HSCs.


Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 503 ◽  
Author(s):  
Oliver Krenkel ◽  
Jana Hundertmark ◽  
Thomas Ritz ◽  
Ralf Weiskirchen ◽  
Frank Tacke

Activation of hepatic stellate cells (HSCs) and their trans-differentiation towards collagen-secreting myofibroblasts (MFB) promote liver fibrosis progression. During chronic liver disease, resting HSCs become activated by inflammatory and injury signals. However, HSCs/MFB not only produce collagen, but also secrete cytokines, participate in metabolism, and have biomechanical properties. We herein aimed to characterize the heterogeneity of these liver mesenchymal cells by single cell RNA sequencing. In vivo resting HSCs or activated MFB were isolated from C57BL6/J mice challenged by carbon tetrachloride (CCl4) intraperitoneally for 3 weeks to induce liver fibrosis and compared to in vitro cultivated MFB. While resting HSCs formed a homogenous population characterized by high platelet derived growth factor receptor β (PDGFRβ) expression, in vivo and in vitro activated MFB split into heterogeneous populations, characterized by α-smooth muscle actin (α-SMA), collagens, or immunological markers. S100 calcium binding protein A6 (S100A6) was a universal marker of activated MFB on both the gene and protein expression level. Compared to the heterogeneity of in vivo MFB, MFB in vitro sequentially and only transiently expressed marker genes, such as chemokines, during culture activation. Taken together, our data demonstrate the heterogeneity of HSCs and MFB, indicating the existence of functionally relevant subsets in hepatic fibrosis.


Author(s):  
Raquel Benitez ◽  
Marta Caro ◽  
Eduardo Andrés-León ◽  
Francisco O'Valle ◽  
Mario Delgado

Liver fibrosis induced by chronic hepatic injury remains as a major cause of morbidity and mortality worldwide. Identification of susceptibility/prognosis factors and new therapeutic tools for treating hepatic fibrotic disorders of various etiologies are urgent medical needs. Cortistatin is a neuropeptide with potent anti-inflammatory and anti-fibrotic activities in lung that binds to receptors that are expressed in liver fibroblasts and hepatic stellate cells. Here, we evaluated the capacity of cortistatin to regulate liver fibrosis. We initially found that hepatic expression of cortistatin inversely correlated with liver fibrosis grade in mice and humans with hepatic disorders. Cortistatin-deficient mice showed exacerbated signs of liver damage and fibrosis and increased mortality rates when challenged to hepatotoxic and cholestatic injury. Compared to wild-type mice, non-parenchymal liver cells isolated from cortistatin-deficient mice showed increased presence of cells with activated myofibroblast phenotypes and a differential genetic signature that is indicative of activated hepatic stellate cells and periportal fibroblasts and of myofibroblasts with active contractile apparatus. Cortistatin treatment reversed in vivo and in vitro these exaggerated fibrogenic phenotypes and protected from progression to severe liver fibrosis in response to hepatic injury. In conclusion, we identify cortistatin as an endogenous molecular break of liver fibrosis and its deficiency as a potential poor-prognosis marker for chronic hepatic disorders that course with fibrosis. Cortistatin-based therapies emerge as attractive strategies for ameliorating severe hepatic fibrosis.


2018 ◽  
Vol 46 (1) ◽  
pp. 82-92 ◽  
Author(s):  
Jianjian Zheng ◽  
Wei Wang ◽  
Fujun Yu ◽  
Peihong Dong ◽  
Bicheng Chen ◽  
...  

Background/Aims: The activation of hepatic stellate cells (HSCs) is considered as a pivotal event in liver fibrosis and epithelial-mesenchymal transition (EMT) process has been reported to be involved in HSC activation. It is known that microRNAs (miRNAs) play a pro-fibrotic or anti-fibrotic role in HSC activation. Recently, emerging studies show that miR-30a is down-regulated in human cancers and over-expression of miR-30a inhibits tumor growth and invasion via suppressing EMT process. However, whether miR-30a could regulate EMT process in HSC activation is still unclear. Methods: miR-30a expression was quantified using real-time PCR in carbon tetrachloride (CCl4)-induced rat liver fibrosis, activated HSCs and patients with cirrhosis. Roles of miR-30a in liver fibrosis in vivo and in vitro were also analyzed. Luciferase activity assays were performed to examine the binding of miR-30a to the 3′-untranslated region of snail family transcriptional repressor 1 (Snai1). Results: miR-30a was down-regulated in human cirrhotic tissues. In CCl4 rats, reduced miR-30a was found in fibrotic liver tissues as well as isolated HSCs. There was a significant reduction in miR-30a in primary HSCs during culture days. miR-30a over-expression resulted in the suppression of CCl4-induced liver fibrosis. Restoration of miR-30a led to the inhibition of HSC activation including cell proliferation, α-SMA and collagen expression. Notably, miR-30a inhibited EMT process, with a reduction in TGF-β1 and Vimentin as well as an increase in GFAP and E-cadherin. miR-30a induced a significant reduction in Snai1 protein expression when compared with the control. Interestingly, Snail protein expression was increased during liver fibrosis, indicating that there may be a negative correlation between miR-30a level and Snai1 protein expression. Further studies demonstrated that Snai1 was a target of miR-30a. Conclusion: Our results suggest that miR-30a inhibits EMT process, at least in part, via reduction of Snai1, leading to the suppression of HSC activation in liver fibrosis.


2019 ◽  
Vol 12 (605) ◽  
pp. eaax1194 ◽  
Author(s):  
Balamurugan Sundaram ◽  
Kristina Behnke ◽  
Andrea Belancic ◽  
Mazin A. Al-Salihi ◽  
Yasser Thabet ◽  
...  

Chronic liver disease can induce prolonged activation of hepatic stellate cells, which may result in liver fibrosis. Inactive rhomboid protein 2 (iRhom2) is required for the maturation of A disintegrin and metalloprotease 17 (ADAM17, also called TACE), which is responsible for the cleavage of membrane-bound tumor necrosis factor–α (TNF-α) and its receptors (TNFRs). Here, using the murine bile duct ligation (BDL) model, we showed that the abundance of iRhom2 and activation of ADAM17 increased during liver fibrosis. Consistent with this, concentrations of ADAM17 substrates were increased in plasma samples from mice after BDL and in patients suffering from liver cirrhosis. We observed increased liver fibrosis, accelerated disease progression, and an increase in activated stellate cells after BDL in mice lacking iRhom2 (Rhbdf2−/−) compared to that in controls. In vitro primary mouse hepatic stellate cells exhibited iRhom2-dependent shedding of the ADAM17 substrates TNFR1 and TNFR2. In vivo TNFR shedding after BDL also depended on iRhom2. Treatment of Rhbdf2−/− mice with the TNF-α inhibitor etanercept reduced the presence of activated stellate cells and alleviated liver fibrosis after BDL. Together, these data suggest that iRhom2-mediated inhibition of TNFR signaling protects against liver fibrosis.


Sign in / Sign up

Export Citation Format

Share Document