RGB-D simultaneous localization and mapping based on combination of static point and line features in dynamic environments

2018 ◽  
Vol 27 (05) ◽  
pp. 1 ◽  
Author(s):  
Huijuan Zhang ◽  
Zaojun Fang ◽  
Guilin Yang
Author(s):  
Zewen Xu ◽  
Zheng Rong ◽  
Yihong Wu

AbstractIn recent years, simultaneous localization and mapping in dynamic environments (dynamic SLAM) has attracted significant attention from both academia and industry. Some pioneering work on this technique has expanded the potential of robotic applications. Compared to standard SLAM under the static world assumption, dynamic SLAM divides features into static and dynamic categories and leverages each type of feature properly. Therefore, dynamic SLAM can provide more robust localization for intelligent robots that operate in complex dynamic environments. Additionally, to meet the demands of some high-level tasks, dynamic SLAM can be integrated with multiple object tracking. This article presents a survey on dynamic SLAM from the perspective of feature choices. A discussion of the advantages and disadvantages of different visual features is provided in this article.


Author(s):  
Alfredo J. Bayuelo ◽  
Tauhidul Alam ◽  
Gregory M. Reis ◽  
Luis Fernando Nino ◽  
Leonardo Bobadilla ◽  
...  

Drones ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 23
Author(s):  
Tong Zhang ◽  
Chunjiang Liu ◽  
Jiaqi Li ◽  
Minghui Pang ◽  
Mingang Wang

In view of traditional point-line feature visual inertial simultaneous localization and mapping (SLAM) system, which has weak performance in accuracy so that it cannot be processed in real time under the condition of weak indoor texture and light and shade change, this paper proposes an inertial SLAM method based on point-line vision for indoor weak texture and illumination. Firstly, based on Bilateral Filtering, we apply the Speeded Up Robust Features (SURF) point feature extraction and Fast Nearest neighbor (FLANN) algorithms to improve the robustness of point feature extraction result. Secondly, we establish a minimum density threshold and length suppression parameter selection strategy of line feature, and take the geometric constraint line feature matching into consideration to improve the efficiency of processing line feature. And the parameters and biases of visual inertia are initialized based on maximum posterior estimation method. Finally, the simulation experiments are compared with the traditional tightly-coupled monocular visual–inertial odometry using point and line features (PL-VIO) algorithm. The simulation results demonstrate that the proposed an inertial SLAM method based on point-line vision for indoor weak texture and illumination can be effectively operated in real time, and its positioning accuracy is 22% higher on average and 40% higher in the scenario that illumination changes and blurred image.


Sign in / Sign up

Export Citation Format

Share Document