Feature significance-based multibag-of-visual-words model for remote sensing image scene classification

2016 ◽  
Vol 10 (3) ◽  
pp. 035004 ◽  
Author(s):  
Lijun Zhao ◽  
Ping Tang ◽  
Lianzhi Huo
2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Ji Li ◽  
Zhen Liu

We propose a scene classification method for speeding up the multisensor remote sensing image fusion by using the singular value decomposition of quaternion matrix and the kernel principal component analysis (KPCA) to extract features. At first, images are segmented to patches by a regular grid, and for each patch, we extract color features by using quaternion singular value decomposition (QSVD) method, and the grey features are extracted by Gabor filter and then by using orientation histogram to describe the grey information. After that, we combine the color features and the orientation histogram together with the same weight to obtain the descriptor for each patch. All the patch descriptors are clustered to get visual words for each category. Then we apply KPCA to the visual words to get the subspaces of the category. The descriptors of a test image then are projected to the subspaces of all categories to get the projection length to all categories for the test image. Finally, support vector machine (SVM) with linear kernel function is used to get the scene classification performance. We experiment with three classification situations on OT8 dataset and compare our method with the typical scene classification method, probabilistic latent semantic analysis (pLSA), and the results confirm the feasibility of our method.


2020 ◽  
Vol 17 (6) ◽  
pp. 968-972 ◽  
Author(s):  
Tianyu Wei ◽  
Jue Wang ◽  
Wenchao Liu ◽  
He Chen ◽  
Hao Shi

2021 ◽  
Vol 13 (10) ◽  
pp. 1950
Author(s):  
Cuiping Shi ◽  
Xin Zhao ◽  
Liguo Wang

In recent years, with the rapid development of computer vision, increasing attention has been paid to remote sensing image scene classification. To improve the classification performance, many studies have increased the depth of convolutional neural networks (CNNs) and expanded the width of the network to extract more deep features, thereby increasing the complexity of the model. To solve this problem, in this paper, we propose a lightweight convolutional neural network based on attention-oriented multi-branch feature fusion (AMB-CNN) for remote sensing image scene classification. Firstly, we propose two convolution combination modules for feature extraction, through which the deep features of images can be fully extracted with multi convolution cooperation. Then, the weights of the feature are calculated, and the extracted deep features are sent to the attention mechanism for further feature extraction. Next, all of the extracted features are fused by multiple branches. Finally, depth separable convolution and asymmetric convolution are implemented to greatly reduce the number of parameters. The experimental results show that, compared with some state-of-the-art methods, the proposed method still has a great advantage in classification accuracy with very few parameters.


Sign in / Sign up

Export Citation Format

Share Document