Semi-Supervised Remote Sensing Image Scene Classification Using Representation Consistency Siamese Network

Wang Miao ◽  
Jie Geng ◽  
Wen Jiang
2020 ◽  
Vol 17 (6) ◽  
pp. 968-972 ◽  
Tianyu Wei ◽  
Jue Wang ◽  
Wenchao Liu ◽  
He Chen ◽  
Hao Shi

2021 ◽  
Vol 13 (10) ◽  
pp. 1950
Cuiping Shi ◽  
Xin Zhao ◽  
Liguo Wang

In recent years, with the rapid development of computer vision, increasing attention has been paid to remote sensing image scene classification. To improve the classification performance, many studies have increased the depth of convolutional neural networks (CNNs) and expanded the width of the network to extract more deep features, thereby increasing the complexity of the model. To solve this problem, in this paper, we propose a lightweight convolutional neural network based on attention-oriented multi-branch feature fusion (AMB-CNN) for remote sensing image scene classification. Firstly, we propose two convolution combination modules for feature extraction, through which the deep features of images can be fully extracted with multi convolution cooperation. Then, the weights of the feature are calculated, and the extracted deep features are sent to the attention mechanism for further feature extraction. Next, all of the extracted features are fused by multiple branches. Finally, depth separable convolution and asymmetric convolution are implemented to greatly reduce the number of parameters. The experimental results show that, compared with some state-of-the-art methods, the proposed method still has a great advantage in classification accuracy with very few parameters.

2019 ◽  
Vol 11 (5) ◽  
pp. 518 ◽  
Bao-Di Liu ◽  
Jie Meng ◽  
Wen-Yang Xie ◽  
Shuai Shao ◽  
Ye Li ◽  

At present, nonparametric subspace classifiers, such as collaborative representation-based classification (CRC) and sparse representation-based classification (SRC), are widely used in many pattern-classification and -recognition tasks. Meanwhile, the spatial pyramid matching (SPM) scheme, which considers spatial information in representing the image, is efficient for image classification. However, for SPM, the weights to evaluate the representation of different subregions are fixed. In this paper, we first introduce the spatial pyramid matching scheme to remote-sensing (RS)-image scene-classification tasks to improve performance. Then, we propose a weighted spatial pyramid matching collaborative-representation-based classification method, combining the CRC method with the weighted spatial pyramid matching scheme. The proposed method is capable of learning the weights of different subregions in representing an image. Finally, extensive experiments on several benchmark remote-sensing-image datasets were conducted and clearly demonstrate the superior performance of our proposed algorithm when compared with state-of-the-art approaches.

Sign in / Sign up

Export Citation Format

Share Document