scholarly journals Using remotely sensed spectral reflectance to indicate leaf photosynthetic efficiency derived from active fluorescence measurements

2017 ◽  
Vol 11 (2) ◽  
pp. 026034 ◽  
Author(s):  
Yi Peng ◽  
Aoli Zeng ◽  
Tinge Zhu ◽  
Shenghui Fang ◽  
Yan Gong ◽  
...  
2010 ◽  
Vol 37 (5) ◽  
pp. 395 ◽  
Author(s):  
Roland Pieruschka ◽  
Denis Klimov ◽  
Zbigniew S. Kolber ◽  
Joseph A. Berry

Chlorophyll fluorescence measurements have been widely applied to quantify the photosynthetic efficiency of plants non-destructively. The most commonly used pulse amplitude modulated (PAM) technique provides a saturating light pulse, which is not practical at the canopy scale. We report here on a recently developed technique, laser induced fluorescence transient (LIFT), which is capable of remotely measuring the photosynthetic efficiency of selected leaves at a distance of up to 50 m. The LIFT approach correlated well with gas exchange measurements under laboratory conditions and was tested in a field experiment monitoring the combined effect of low temperatures and high light intensity on a variety of plants during the early winter in California. We observed a reduction in maximum and effective quantum yield in electron transport for Capsicum annuum L., Lycopersicon esculentum L. and Persea americana Mill. as the temperatures fell, while a grass community was not affected by combined low temperature and high light stress. The ability to make continuous, automatic and remote measurements of the photosynthetic efficiency of leaves with the LIFT system provides a new approach for studying and monitoring of stress effects on the canopy scale.


2000 ◽  
Vol 78 (8) ◽  
pp. 1021-1033 ◽  
Author(s):  
Ann Marie Odasz-Albrigtsen ◽  
Hans Tømmervik ◽  
Patrick Murphy

Photosynthetic efficiency was estimated by chlorophyll fluorescence measurements (Fv/Fm) in 11 plant species growing along a steep gradient of airborne pollution along the Russian-Norwegian border (70°N, 30°E). Photosynthetic efficiency was positively correlated with environmental variables including annual temperature and a maritime gradient and was negatively correlated with the airborne concentrations of Cu, Ni, and SO2 from the Cu-Ni smelters. Photosynthetic efficiency in six plant species from the mixed forest, but not pine (Pinus sylvestris L.), and three species from the birch forest was inversely correlated with SO2 and the concentrations of Ni and Cu in lichens. Measurement of fluorescence in these species was a sensitive indicator of pollutant impact. Plant cover at the 16 study sites and the photosynthetic efficiency of five target species correlated with normalized difference vegetation index (NDVI) values. This study demonstrated that it is possible to detect relations among field-measured ecophysiological responses in plants, levels of airborne pollutants, and satellite remote-sensed data.Key words: chlorophyll fluorescence, smelters, sulfur dioxide, nickel, copper, normalized difference vegetation index (NDVI).


2010 ◽  
Vol 2 (2) ◽  
pp. 416-431 ◽  
Author(s):  
Craig S. Daughtry ◽  
Guy Serbin ◽  
James Reeves ◽  
Paul Doraiswamy ◽  
Earle Raymond Hunt

2016 ◽  
Vol 28 (1) ◽  
pp. 25-30 ◽  
Author(s):  
Katarzyna Kowalczyk ◽  
Janina Gajc-Wolska ◽  
Monika Marcinkowska ◽  
Magdalena D. Cetner ◽  
Hazem M. Kalaji

AbstractEndive (Cichorium endiviaL.) is a leaf vegetable with high vitamin and nutritional values. Therefore, an increase of its cultivation in Poland and other European countries has been observed in recent years. The aim of this research was to study the effect of different growth media on the quality and photosynthetic efficiency of different endive cultivars. The experiment was conducted in controlled greenhouse conditions. Endive was grown in three independent NFT cultivation systems: a standard culture medium (control, A1), a culture medium concentrated three-fold (A2) and a medium concentrated five-fold (A3). Four cultivars were used: ‘Kethel’, ‘Barundi’, ‘Galanti’ and ‘Perceval’. The plants were examined for the number and weight of fully-grown leaves and the weight of roots, dry matter content and chemical quality attributes of endive such as ascorbic acid (AA), total soluble solids (TSS), chlorophyll and proline. In addition, several physiological traits such as modulated chlorophyllafluorescence were measured.Both three-fold and five-fold increases of ion concentration in the nutrient solution induced stress in the endive plants. Our results showed that the photosynthetic efficiency of the tested endive plants was affected by the cultivar factor and only the highest (five-fold) ion concentration in the nutrient solution. Growth under a medium of three-fold ion concentration did not affect the photosynthetic efficiency, despite observed changes in the growth and quality parameters of the endive plants. This study suggests that the type of fluorescence measurements used in this experiment (modulated) cannot be recommended as a sufficient bioindicator during endive production.


Author(s):  
Mark Jakubauskas ◽  
Kevin Price

Remotely sensed multispectral data collected from satellites provide a systematic, synoptic ability to assess conditions over large areas on a regular basis. Early use of this satellite data for land cover mapping was based on spectral differences of cover types, with little integration of ancillary data such as soils or topographic information (Iverson et al. 1990). In recent years, concurrent with trends toward integrating remotely sensed and ancillary data for improved classification accuracy (Cibula and Nyquist 1987; Frank 1988), there has been increasing interest in utilizing remotely sensed data for extracting biophysically important variables, relating observed spectral reflectance to leaf area index, biomass, net primary productivity, and vegetation moisture content (Waring et al. 1986; Hobbs and Mooney 1990). The concept of using remotely sensed spectral data to map and monitor the progress of succession within forests and other environments has not been extensively explored. However, the capability to map and predict successional stages of forest habitat types on a landscape to regional scale has important implications for animal habitat management, assessment of insect infestation susceptibility, prediction of fire behavior, and evaluation of plant and animal species diversity. Ecological models based on established successional change rates and trends permit the prediction of future environmental conditions, landscape patterns, and the propagation and effects of disturbances across these landscapes (Hall et al. 1988; Romme 1982). Despain (1990) provides two examples where information on habitat and cover types is important for park management purposes: the cumulative effects model for grizzly bears; and the prediction, assessment, and management of mountain pine beetle outbreaks in conifer forests. Accurate mapping of habitat and cover types can provide information on the distribution and pattern of specific plant communities important to animal species for food, cover, and breeding ground (Knight and Wallace 1989). The ability to map and predict successional stages of forest habitat types has implications for prediction of fire behavior and spread. Previous studies (Despain 1990; Romme and Despain 1989; Romme 1982; Taylor 1969) have noted the relationship between forest age and fire susceptibility. Older stands are comparatively more flammable than younger stands due to fuel accumulations on the ground and in the canopy, and have a higher propensity to propagate and sustain extensive crown fires. Spatial patterns of cover types may also be important, with a highly fragmented landscape mosaic providing natural firebreaks under typical weather conditions. Consequently, as Despain (1990) has noted, the ability to map forest habitat and cover types is of importance for estimation of fire intensity and spread. The use of a single habitat type provides a logical unit for environmental stratification of the study site. Since a habitat type integrates vegetation, climate, topography, and soils (Pfister and Amo 1980), using a single habitat type forces a restriction to selective ranges in climate, topography, and soils types. These constrictions will minimize the effects of abiotic variation on the recorded spectral reflectance, allowing analysis of spectral variation to be concentrated on the changes in biotic factors associated with succession.


2015 ◽  
Vol 59 (2) ◽  
pp. 357-365 ◽  
Author(s):  
M. Bartak ◽  
K. Trnkova ◽  
E. S. Hansen ◽  
J. Hazdrova ◽  
K. Skacelova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document