Effect of dehydration on spectral reflectance and photosynthetic efficiency in Umbilicaria arctica and U. hyperborea

2015 ◽  
Vol 59 (2) ◽  
pp. 357-365 ◽  
Author(s):  
M. Bartak ◽  
K. Trnkova ◽  
E. S. Hansen ◽  
J. Hazdrova ◽  
K. Skacelova ◽  
...  
Agronomy ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 35 ◽  
Author(s):  
Salah El-Hendawy ◽  
Nasser Al-Suhaibani ◽  
Yaser Dewir ◽  
Salah Elsayed ◽  
Majed Alotaibi ◽  
...  

Hyperspectral sensing offers a quick and non-destructive alternative for assessing phenotypic parameters of plant physiological status and salt stress tolerance. This study compares the performance of published and modified spectral reflectance indices (SRIs) for estimating and predicting the growth and photosynthetic efficiency of two wheat cultivars exposed to three salinity levels (control, 6.0, and 12.0 dS m−1). Results show that individual SRIs based on visible- and near-infrared (VIS/VIS, NIR/VIS, and NIR/NIR) estimate and predict measured parameters considerably more efficiently than those based on shortwave-infrared (SWIR/VIS and SWIR/NIR), with the exception of some modified indices (the water balance index (WABI-1(1550, 482), WABI-2(1640, 482), and WABI-3(1650, 531)), normalized difference moisture index (NDMI(1660, 1742)), and dry matter content index (DMCI(1550, 2305)), which show moderate to strong relationships with measured parameters. Overall results indicate that modified SRIs can serve as rapid and non-destructive high-throughput alternative approaches for tracking growth and photosynthetic efficiency of wheat under salt stress field conditions.


2012 ◽  
Vol 2 (1) ◽  
pp. 31-41 ◽  
Author(s):  
Radek Jupa ◽  
Josef Hájek ◽  
Jana Hazdrová ◽  
Miloš Barták

This study aimed to evaluate the effective photosynthetic quantum yield (FPSII) and the Photochemical Reflectance Index (PRI) for assessment of photosynthetic performance of two Umbilicaria lichens during gradual desiccation of their thalli. U. cylindrica andU. decussata exhibited curvilinear relationship (S-shape curve) of decreasing FPSII values with decreasing water potential (WP) of thalli. During initial phase of desiccation (WP from 0 to -10 MPa), no decrease of FPSII was apparent, further desiccation (WP from -10 to -20 MPa) led to fast FPSII decrease from 0.6 to 0.1 indicating strong inhibition of photosynthetic processes. Critical WP at which photosythetic processes are fully inhibited was found bellow -25 MPa in both lichen species. Photochemical Reflectance Index (PRI) exhibited curvilinear increase with thalli desiccation (decreasing WP). At full thallus hydration, the PRI reached the value of -0.18 in both species. Under strong dehydration (WP from -20 to -30 MPa), however, U. cylindrica showed somewhat lower value (-0.04) than U.decussata (-0.02 MPa). PRI to WP relationship is discussed and compared to existing evidence from higher plants and poikilohydric organisms.


2016 ◽  
Author(s):  
Thierry Jauffrais ◽  
Bruno Jesus ◽  
Edouard Metzger ◽  
Jean-Luc Mouget ◽  
Frans Jorissen ◽  
...  

Abstract. Some benthic foraminifera have the ability to incorporate functional chloroplasts from diatoms (kleptoplasty). Our objective was to investigate chloroplast functionality of two benthic foraminifera (Haynesina germanica and Ammonia tepida) exposed to different irradiance levels (0, 25, 70 μmol photon m-2 s-1) using spectral reflectance, epifluorescence observations, oxygen evolution and pulse amplitude modulated (PAM) fluorometry. Our results clearly showed that H. germanica was capable of using its kleptoplasts for more than one week while A. tepida showed very limited kleptoplastic ability with maximum photosystem II quantum efficiency (Fv/Fm = 0.4), much lower than H. germanica and decreasing to zero in only one day. Only H. germanica showed net oxygen production with a compensation point at 24 μmol photon m-2 s-1 and a production up to 1000 pmol O2 cell-1 day-1 at 300 μmol photon m-2 s-1. Haynesina germanica Fv/Fm slowly decreased from 0.65 to 0.55 in 7 days when kept in darkness; however, it quickly decreased to 0.2 under high light. Kleptoplast functional time was thus estimated between 11 and 21 days in darkness and between 7 and 8 days at high light. These results emphasize that studies about foraminifera kleptoplasty must take into account light history. Additionally, this study showed that the kleptoplasts are unlikely to be completely functional, thus requiring continuous chloroplast resupply from foraminifera food source. The advantages of keeping functional chloroplasts are discussed but more information is needed to better understand foraminifera feeding strategies.


2020 ◽  
Vol 2020 (14) ◽  
pp. 357-1-357-6
Author(s):  
Luisa F. Polanía ◽  
Raja Bala ◽  
Ankur Purwar ◽  
Paul Matts ◽  
Martin Maltz

Human skin is made up of two primary chromophores: melanin, the pigment in the epidermis giving skin its color; and hemoglobin, the pigment in the red blood cells of the vascular network within the dermis. The relative concentrations of these chromophores provide a vital indicator for skin health and appearance. We present a technique to automatically estimate chromophore maps from RGB images of human faces captured with mobile devices such as smartphones. The ultimate goal is to provide a diagnostic aid for individuals to monitor and improve the quality of their facial skin. A previous method approaches the problem as one of blind source separation, and applies Independent Component Analysis (ICA) in camera RGB space to estimate the chromophores. We extend this technique in two important ways. First we observe that models for light transport in skin call for source separation to be performed in log spectral reflectance coordinates rather than in RGB. Thus we transform camera RGB to a spectral reflectance space prior to applying ICA. This process involves the use of a linear camera model and Principal Component Analysis to represent skin spectral reflectance as a lowdimensional manifold. The camera model requires knowledge of the incident illuminant, which we obtain via a novel technique that uses the human lip as a calibration object. Second, we address an inherent limitation with ICA that the ordering of the separated signals is random and ambiguous. We incorporate a domain-specific prior model for human chromophore spectra as a constraint in solving ICA. Results on a dataset of mobile camera images show high quality and unambiguous recovery of chromophores.


2020 ◽  
Vol 64 (5) ◽  
pp. 50411-1-50411-8
Author(s):  
Hoda Aghaei ◽  
Brian Funt

Abstract For research in the field of illumination estimation and color constancy, there is a need for ground-truth measurement of the illumination color at many locations within multi-illuminant scenes. A practical approach to obtaining such ground-truth illumination data is presented here. The proposed method involves using a drone to carry a gray ball of known percent surface spectral reflectance throughout a scene while photographing it frequently during the flight using a calibrated camera. The captured images are then post-processed. In the post-processing step, machine vision techniques are used to detect the gray ball within each frame. The camera RGB of light reflected from the gray ball provides a measure of the illumination color at that location. In total, the dataset contains 30 scenes with 100 illumination measurements on average per scene. The dataset is available for download free of charge.


Sign in / Sign up

Export Citation Format

Share Document