Twenty-one degrees of freedom model based hand pose tracking using a monocular RGB camera

2016 ◽  
Vol 55 (1) ◽  
pp. 013101
Author(s):  
Junyeong Choi ◽  
Jong-Il Park ◽  
Hanhoon Park
Author(s):  
Abigail Niesen ◽  
Anna L Garverick ◽  
Maury Hull

Abstract Maximum total point motion (MTPM), the point on a baseplate that migrates the most, has been used to assess the risk of tibial baseplate loosening using radiostereometric analysis (RSA). Two methods for determining MTPM for model-based RSA are to use either 5 points distributed around the perimeter of the baseplate or to use all points on the 3D model. The objectives were to quantify the mean difference in MTPM using 5 points vs. all points, compute the percent error relative to the 6-month stability limit for groups of patients, and to determine the dependency of differences in MTPM on baseplate size and shape. A dataset of 10,000 migration values was generated using the mean and standard deviation of migration in six degrees of freedom at 6 months from an RSA study. The dataset was used to simulate migration of 3D models (two baseplate shapes and two baseplate sizes) and calculate the difference in MTPM using 5 virtual points vs. all points and the percent error (i.e. difference in MTPM/stability limit) relative to the 6-month stability limit. The difference in MTPM was about 0.02 mm, or 4% percent relative to the 6-month stability limit, which is not clinically important. Furthermore, results were not affected by baseplate shape or size. Researchers can decide whether to use 5 points or all points when computing MTPM for model-based RSA. The authors recommend using 5 points to maintain consistency with marker-based RSA.


2011 ◽  
Vol 97-98 ◽  
pp. 787-793 ◽  
Author(s):  
Shen Hua Yang ◽  
Guo Quan Chen ◽  
Xing Hua Wang ◽  
Yue Bin Yang

Due to the target ship in the traditional ship handling simulator have not the ability to give way to other ships automatically to avoid collision, this paper put forward a new idea that bringing the hydraulic servo platform, six degrees of freedom ship mathematical model, the actual traffic flow, researching achievement of automatic anti-collision in research of the new pattern ship handling simulator, and successfully develop the Intelligent Ship Handling Simulator(ISHS for short). The paper focuse on the research on the network communication model of ISHS. We took the entire simulator system as three relatively independent networks, proposed a framework of communication network that combined IOCP model based on TCP with blocking model based on UDP, and gave the communication process and protocols of system. Test results indicate that this is an effective way to improve the ownship capacity of ship handling simulator and meet the need of multi-ownship configuration of desktop system of ship handling simulator.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Magdalena Żuk ◽  
Celina Pezowicz

Objective. The purpose of the present work was to assess the validity of a six-degrees-of-freedom gait analysis model based on the ISB recommendation on definitions of joint coordinate systems (ISB 6DOF) through a quantitative comparison with the Helen Hays model (HH) and repeatability assessment.Methods. Four healthy subjects were analysed with both marker sets: an HH marker set and four marker clusters in ISB 6DOF. A navigated pointer was used to indicate the anatomical landmark position in the cluster reference system according to the ISB recommendation. Three gait cycles were selected from the data collected simultaneously for the two marker sets.Results. Two protocols showed good intertrial repeatability, which apart from pelvic rotation did not exceed 2°. The greatest differences between protocols were observed in the transverse plane as well as for knee angles. Knee internal/external rotation revealed the lowest subject-to-subject and interprotocol repeatability and inconsistent patterns for both protocols. Knee range of movement in transverse plane was overestimated for the HH set (the mean is 34°), which could indicate the cross-talk effect.Conclusions. The ISB 6DOF anatomically based protocol enabled full 3D kinematic description of joints according to the current standard with clinically acceptable intertrial repeatability and minimal equipment requirements.


Author(s):  
H. Abbas ◽  
S. M. Hashemi ◽  
H. Werner

In this paper, low-complexity linear parameter-varying (LPV) modeling and control of a two-degrees-of-freedom robotic manipulator is considered. A quasi-LPV model is derived and simplified in order to facilitate LPV controller synthesis. An LPV gain-scheduled, decentralized PD controller in linear fractional transformation form is designed, using mixed sensitivity loop shaping to take — in addition to high tracking performance — noise and disturbance rejection into account, which are not considered in model-based inverse dynamics or computed torque control schemes. The controller design is based on the existence of a parameter-dependent Lyapunov function — employing the concept of quadratic separators — thus reducing the conservatism of design. The resulting bilinear matrix inequality (BMI) problem is solved using a hybrid gradient-LMI technique. Experimental results illustrate that the LPV controller clearly outperforms a decentralized LTI-PD controller and achieves almost the same accuracy as a model-based inverse dynamics and a full-order LPV controllers in terms of tracking performance while being of significantly lower complexity.


Sign in / Sign up

Export Citation Format

Share Document