Microstructured surface stitching based on wavelet transform three-dimensional data matching

2021 ◽  
Vol 60 (01) ◽  
Author(s):  
Lulu Li ◽  
Hui Zhang ◽  
Xiaojin Huang ◽  
Qian Liu
2001 ◽  
Vol 32 (3) ◽  
pp. 122-138 ◽  
Author(s):  
Tamer Demiralp ◽  
Ahmet Ademoglu

Event related brain potential (ERP) waveforms consist of several components extending in time, frequency and topographical space. Therefore, an efficient processing of data which involves the time, frequency and space features of the signal, may facilitate understanding the plausible connections among the functions, the anatomical structures and neurophysiological mechanisms of the brain. Wavelet transform (WT) is a powerful signal processing tool for extracting the ERP components occurring at different time and frequency spots. A technical explanation of WT in ERP processing and its four distinct applications are presented here. The first two applications aim to identify and localize the functional oddball ERP components in terms of certain wavelet coefficients in delta, theta and alpha bands in a topographical recording. The third application performs a similar characterization that involves a three stimulus paradigm. The fourth application is a single sweep ERP processing to detect the P300 in single trials. The last case is an extension of ERP component identification by combining the WT with a source localization technique. The aim is to localize the time-frequency components in three dimensional brain structure instead of the scalp surface. The time-frequency analysis using WT helps isolate and describe sequential and/or overlapping functional processes during ERP generation, and provides a possibility for studying these cognitive processes and following their dynamics in single trials during an experimental session.


2012 ◽  
Vol 155-156 ◽  
pp. 440-444
Author(s):  
He Yan ◽  
Xiu Feng Wang

JPEG2000 algorithm has been developed based on the DWT techniques, which have shown how the results achieved in different areas in information technology can be applied to enhance the performance. Lossy image compression algorithms sacrifice perfect image reconstruction in favor of decreased storage requirements. Wavelets have become a popular technology for information redistribution for high-performance image compression algorithms. Lossy compression algorithms sacrifice perfect image reconstruction in favor of improved compression rates while minimizing image quality lossy.


Biometrics ◽  
2017 ◽  
pp. 761-777
Author(s):  
Di Zhao

Mobile GPU computing, or System on Chip with embedded GPU (SoC GPU), becomes in great demand recently. Since these SoCs are designed for mobile devices with real-time applications such as image processing and video processing, high-efficient implementations of wavelet transform are essential for these chips. In this paper, the author develops two SoC GPU based DWT: signal based parallelization for discrete wavelet transform (sDWT) and coefficient based parallelization for discrete wavelet transform (cDWT), and the author evaluates the performance of three-dimensional wavelet transform on SoC GPU Tegra K1. Computational results show that, SoC GPU based DWT is significantly faster than SoC CPU based DWT. Computational results also show that, sDWT can generally satisfy the requirement of real-time processing (30 frames per second) with the image sizes of 352×288, 480×320, 720×480 and 1280×720, while cDWT can only obtain read-time processing with small image sizes of 352×288 and 480×320.


2009 ◽  
Vol 29 (1) ◽  
pp. 197-202 ◽  
Author(s):  
周翔 Zhou Xiang ◽  
赵宏 Zhao Hong

2012 ◽  
Vol 198-199 ◽  
pp. 1481-1486
Author(s):  
Xin Li ◽  
Yi Ping Tian

Watermark information is embedded in three-dimensional mesh model through three-dimensional watermarking algorithm for effective copyright protection. The widely use of three-dimensional grid model attracts more attention on the copyright protection. The digital watermark algorithm with the NURBS model based on the wavelet transform aims to get the virtual grayscale images using the control point coordinate. Then we can embed the watermark into the virtual gray image watermark. It can change the three-dimensional models into two-dimensional images. And this algorithm can enhance the operability and simplicity of the watermark embedding. Experiments show that the proposed algorithm is easy to implement, simple in principle, and the extracted watermark is clearly visible, moreover, the model does not need to be directly modified, so it has good robustness. Watermarked model does not change in the visual, it has good invisibility.


2006 ◽  
Vol 2 (4) ◽  
pp. 411-417 ◽  
Author(s):  
Bahram Javidi ◽  
Cuong Manh Do ◽  
Seung-Hyun Hong ◽  
Takanori Nomura

Sign in / Sign up

Export Citation Format

Share Document