Long-wavelength quantum-well infrared detectors based on intersubband transitions in InGaAs/InP quantum wells

Author(s):  
Jan Y. Andersson ◽  
Lennart Lundqvist ◽  
Z. F. Paska ◽  
Klaus P. Streubel ◽  
Johan Wallin

2002 ◽  
Vol 12 (03) ◽  
pp. 593-658 ◽  
Author(s):  
A. ROGALSKI

Investigations of the performance of quantum well infrared photodetectors (QWIPs) as compared to other types of semiconductor infrared (IR) detectors are presented. In comparative studies both photon and thermal detectors are considered. More attention is paid to photon detectors and between them we can distinguish: HgCdTe photodiodes, InSb photodiodes, Schottky barrier photoemissive detectors, and doped silicon detectors. Special attention has been paid to competitive technologies in long wavelength IR (LWIR) and very LWIR (VLWIR) spectral ranges with emphasis on the material properties, device structure, and their impact on FPA performance. The potential performance of different materials as infrared detectors is examined utilizing the α/G ratio, where α is the absorption coefficient and G is the thermal generation. From the discussion results, LWIR QWIP cannot compete with HgCdTe photodiode as the single device especially at higher temperature operation(> 70 K) due to fundamental limitations associated with intersubband transitions. However, the advantage of HgCdTe is less distinct in the temperature range below 50 K due to problems involved in the HgCdTe material (p-type doping, Shockley–Read recombination, trap-assisted tunneling, surface and interface instabilities). Even though the QWIP is a photoconductor, several its properties such as high impedance, fast response time, long integration time, and low power consumption, well comply with requirements for large FPAs fabrication. Due to the high material quality at low temperature, QWIP has potential advantages over HgCdTe for VLWIR FPA applications in terms of the array size, uniformity, yield and cost of the systems. Both HgCdTe photodiodes and quantum well infrared photodetectors offer multicolor capability in the MWIR and LWIR range. Powerful possibilities of QWIP technology are connected with VLWIR FPA applications and with multicolor detection. QWIP FPAs combine the advantages of PtSi Schottky barrier arrays (high uniformity, high yield, radiation hardness, large arrays, lower cost) with the advantages of HgCdTe (high quantum efficiency and long wavelength response).



2007 ◽  
Vol 17 (01) ◽  
pp. 115-120
Author(s):  
N. Sustersic ◽  
S. Kim ◽  
P.-C. Lv ◽  
M. Coppinger ◽  
T. Troeger ◽  
...  

In this paper, we report on current pumped THz emitting devices based on intersubband transitions in SiGe quantum wells. The spectral lines occurred in a range from 5 to 12 THz depending on the quantum well width, Ge concentration in the well, and device temperature. A time-averaged power of 15 nW was extracted from a 16 period SiGe/Si superlattice with quantum wells 22 Å thick, at a device temperature of 30 K and a drive current of 550 mA. A net quantum efficiency of approximately 3 × 10-4 was calculated from the power and drive current, 30 times higher than reported for comparable quantum cascades utilizing heavy-hole to heavy-hole transitions and, taking into account the number of quantum well periods, approximately four times larger than for electroluminescence reported previously from a device utilizing light-hole to heavy-hole transitions.



1994 ◽  
Vol 299 ◽  
Author(s):  
F. Szmulowicz ◽  
M. O. Manasreh ◽  
C. Kutsche ◽  
C. E. Stutz

AbstractIntersubband transitions in a series of well-doped ([Si] = 2.0×1018cm−3) In0.07Ga0.93As/Al0.4Ga0.6As multiple quantum well samples were studied as a function of the well width by using the optical absorption technique. A single intersubband transition is observed in samples in which the Fermi energy level is between the ground and the first excited states in the quantum well. On the other hand, two intersubband transitions were recorded in samples where the Fermi energy level lies between the first and the second excited states. These two intersubband transitions were attributed to ground-to-first excited states and first-to-second excited states transitions. The energy separation between the latter two intersubband transitions was found to increase as the well width is increased. The fact that two intersubband transitions were observed in certain samples may suggest that specially designed quantum wells can be used for two color long wavelength infrared detectors.



2002 ◽  
Vol 12 (03) ◽  
pp. 761-801 ◽  
Author(s):  
SHENG S. LI

Quantum well infrared photodetectors (QWIPs) have been widely investigated for the 3–5 μm mid-wavelength infrared (MWIR) and 8–12 μm long-wavelength infrared (LWIR) atmospheric spectral windows as well as very long wavelength infrared (VLWIR: λc > 14 μm) imaging array applications in the past decade. The mature III-V compound semiconductor growth technology and the design flexibility of device structures have led to the rapid development of various QWIP structures for infrared focal plane arrays (FPAs) applications. In addition to the single-color QWIP with narrow bandwidth, multi-color or broadband QWIPs required for advanced IR sensing and imaging applications have also emerged in recent years. Using band gap engineering approach, the multi-color (2, 3, and 4-color) QWIPs with multi-stack quantum wells and voltage-tunable asymmetrical coupled quantum well structures for detection in the MWIR, LWIR, and VLWIR bands have been demonstrated recently. The triple-coupled (TC-) QWIP employs the quantum confined Stark effect to tune the peak detection wavelength by the applied bias voltage, A typical single-color QWIP exhibits a rather narrow spectral bandwidth of 1 to 2 μm. For certain applications, such as spectroscopy, sensing of a broader range of infrared radiation is highly desirable. Using the stacked quantum wells with different well width and depth, the digital-graded superlattice barrier (DGSLB) or the linear-graded barrier (LGB) structures, broadband (BB-) QWIPs covering the 8–14 μm atmospheric spectral window have been reported recently. In this chapter, the basic operation principles of a QWIP, and the design, fabrication, and characterization of multi-color and broadband QWIPs based on the GaAs/AlGaAs and InGaAs/AlGaAs material systems for the MW/LW/VLWIR applications are depicted.



2001 ◽  
Vol 692 ◽  
Author(s):  
Sheng S. Li

AbstractQuantum well infrared photodetectors (QWIPs) have been widely investigated for the 3–5 μm mid-wavelength infrared (MWIR) and 8–12 μm long-wavelength infrared (LWIR) atmospheric spectral windows as well as very long wavelength infrared (VLWIR: λc 14 μm) detection in the past decade. The mature III-V compound semiconductor growth technology and the design flexibility of device structures have led to the rapid development of various QWIP structures for infrared focal plane arrays (FPAs) applications. In addition to the single-color QWIP with narrow bandwidth, the multi-color QWIP required for advanced IR sensing and imaging applications have also been emerged in recent years. Using band gap engineering approach, the multi-color (2, 3, and 4- color) QWIPs using multi-stack quantum wells with different well width and depth and voltage-tunable triple- coupled quantum well (TCQW) structure for detection in the MWIR, LWIR, and VLWIR bands have been demonstrated. In this paper, the design, fabrication, and characterization of a voltage-tunable 2-stack 3-color QWIP for MW/LW/LW IR detection and a 3-stack 3-color QWIP for detection in the water, ozone, and CO2 atmospheric blocking bands are depicted.



1991 ◽  
Vol 3 (42) ◽  
pp. 8267-8279 ◽  
Author(s):  
J Kraus ◽  
P Ils ◽  
C Schuller ◽  
J K Ebeling ◽  
W Schlapp


2011 ◽  
Vol 25 (22) ◽  
pp. 1847-1854 ◽  
Author(s):  
SI HUA HA ◽  
SHI LIANG BAN ◽  
JUN ZHU

The quantum confined Stark effect on the optical absorption of intersubband transitions in nitride quantum wells is investigated by means of the density matrix formulism. The built-in electric field, which is caused by the piezoelectric polarization produced by the lattice mismatch and thermal strain, and by the spontaneous polarization, is taken into account. The three-energy-level system is obtained by designing a quantum-well structure composed by two barriers with different band gaps. For example, the corresponding wavelengths for 1–2, 1–3 and 2–3 transitions in an Al 0.5 Ga 0.5 N / In 0.3 Ga 0.7 N / GaN quantum well with the well width of 5 nm are calculated as 1.84 μm, 0.95 μm and 2.24 μm, respectively. Moreover, they decrease with increasing the Al composition of left barrier.



Sign in / Sign up

Export Citation Format

Share Document