Two-dimensional computer simulations for real-time irradiation planning of laser-induced interstitial thermotherapy (LITT)

Author(s):  
Andre Roggan ◽  
Gerhard J. Mueller
2018 ◽  
pp. 14-18
Author(s):  
V. V. Artyushenko ◽  
A. V. Nikulin

To simulate echoes from the earth’s surface in the low flight mode, it is necessary to reproduce reliably the delayed reflected sounding signal of the radar in real time. For this, it is necessary to be able to calculate accurately and quickly the dependence of the distance to the object being measured from the angular position of the line of sight of the radar station. Obviously, the simplest expressions for calculating the range can be obtained for a segment or a plane. In the text of the article, analytical expressions for the calculation of range for two-dimensional and three-dimensional cases are obtained. Methods of statistical physics, vector algebra, and the theory of the radar of extended objects were used. Since the calculation of the dependence of the range of the object to the target from the angular position of the line of sight is carried out on the analytical expressions found in the paper, the result obtained is accurate, and due to the relative simplicity of the expressions obtained, the calculation does not require much time.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Florian Roessler ◽  
André Streek

Abstract In laser processing, the possible throughput is directly scaling with the available average laser power. To avoid unwanted thermal damage due to high pulse energy or heat accumulation during MHz-repetition rates, energy distribution over the workpiece is required. Polygon mirror scanners enable high deflection speeds and thus, a proper energy distribution within a short processing time. The requirements of laser micro processing with up to 10 kW average laser powers and high scan speeds up to 1000 m/s result in a 30 mm aperture two-dimensional polygon mirror scanner with a patented low-distortion mirror configuration. In combination with a field programmable gate array-based real-time logic, position-true high-accuracy laser switching is enabled for 2D, 2.5D, or 3D laser processing capable to drill holes in multi-pass ablation or engraving. A special developed real-time shifter module within the high-speed logic allows, in combination with external axis, the material processing on the fly and hence, processing of workpieces much larger than the scan field.


Soft Matter ◽  
2021 ◽  
Author(s):  
Claudio Maggi ◽  
Matteo Paoluzzi ◽  
Andrea Crisanti ◽  
Emanuela Zaccarelli ◽  
Nicoletta Gnan

We perform large-scale computer simulations of an off-lattice two-dimensional model of active particles undergoing a motility-induced phase separation (MIPS) to investigate the systems critical behaviour close to the critical point...


2015 ◽  
Vol 23 (4) ◽  
pp. 400-411 ◽  
Author(s):  
Claudio E. Tatsui ◽  
R. Jason Stafford ◽  
Jing Li ◽  
Jonathan N. Sellin ◽  
Behrang Amini ◽  
...  

OBJECT High-grade malignant spinal cord compression is commonly managed with a combination of surgery aimed at removing the epidural tumor, followed by spinal stereotactic radiosurgery (SSRS) aimed at local tumor control. The authors here introduce the use of spinal laser interstitial thermotherapy (SLITT) as an alternative to surgery prior to SSRS. METHODS Patients with a high degree of epidural malignant compression due to radioresistant tumors were selected for study. Visual analog scale (VAS) scores for pain and quality of life were obtained before and within 30 and 60 days after treatment. A laser probe was percutaneously placed in the epidural space. Real-time thermal MRI was used to monitor tissue damage in the region of interest. All patients received postoperative SSRS. The maximum thickness of the epidural tumor was measured, and the degree of epidural spinal cord compression (ESCC) was scored in pre- and postprocedure MRI. RESULTS In the 11 patients eligible for study, the mean VAS score for pain decreased from 6.18 in the preoperative period to 4.27 within 30 days and 2.8 within 60 days after the procedure. A similar VAS interrogating the percentage of quality of life demonstrated improvement from 60% preoperatively to 70% within both 30 and 60 days after treatment. Imaging follow-up 2 months after the procedure demonstrated a significant reduction in the mean thickness of the epidural tumor from 8.82 mm (95% CI 7.38–10.25) before treatment to 6.36 mm (95% CI 4.65–8.07) after SLITT and SSRS (p = 0.0001). The median preoperative ESCC Grade 2 was scored as 4, which was significantly higher than the score of 2 for Grade 1b (p = 0.04) on imaging follow-up 2 months after the procedure. CONCLUTIONS The authors present the first report on an innovative minimally invasive alternative to surgery in the management of spinal metastasis. In their early experience, SLITT has provided local control with low morbidity and improvement in both pain and the quality of life of patients.


2015 ◽  
Vol 17 (14) ◽  
pp. 9533-9540 ◽  
Author(s):  
C. Attaccalite ◽  
A. Nguer ◽  
E. Cannuccia ◽  
M. Grüning

By using a real-time approach based on Green's function theory we predict a strong second-harmonic generation (SHG) for frequencies at which Ti:sapphire laser operates and for which the materials are transparent.


Sign in / Sign up

Export Citation Format

Share Document