Needs, requirements, and new proposals for ultra-high-speed video cameras in Japan

Author(s):  
Takeharu G. Etoh ◽  
Kohsei Takehara
Author(s):  
Keisuke Matsuda ◽  
Yusuke Ozawa ◽  
Takayuki Saito

Optical fiber probing is very useful and reliable for bubbles/droplets measurement particularly in the gas-liquid two-phase flows that have dense dispersed phase and are impossible to be measured via usual visualization techniques. For the practical purpose of small- or medium-size bubbles/droplets measurement, one of the authors successfully developed a Four-Tip Optical-fiber Probe (F-TOP) and reported their excellent performance in industrial uses. Recently, particular demands for measuring properties of micro bubbles/droplets have increased in researches on multi-phase flows. However, no one succeeded in simultaneously measuring diameters and velocities of high-speed micro-droplets (velocity > 50 m/s; 50 μm < diameter < 500 μm). We made a challenge of measuring such tiny droplets via newly developed optical fiber probe equipped with two tips (Two-Tip Optical-fiber Probe: T-TOP). We have succeeded in this difficult measurement with it. Each optical fiber probe composing the T-TOP is made of a silica optical fiber (125 μm in external diameter, 50 μm in core diameter, 37.5 μm in clad thickness). The optical fiber was fine-drawn using a micro pipette puller, and this yielded a sub-μm-scale tip. The interval of the fiber axes and the gap of the tips were arranged depending on the droplets diameter range. In this paper, we demonstrate the performance of the T-TOP. First, we confirm its practicality in industrial use. The strength of the T-TOP is confirmed by exposure test of high-velocity and high-temperature steam flows. Second, we consider the influence of the flow on the measurement of T-TOP; the optical noise due to probe vibration by the high-velocity gas flow around the T-TOP is considered. Next, we confirm its performance using an orifice-type nozzle (300 μm < droplets diameter < 500 μm; droplets velocities < 40 m/s). We confirm the performance of the T-TOP; the results of T-TOP are compared with those of the visualization of the droplets by using an ultra-high-speed video camera. At the same time, we consider the process of droplet contact with the T-TOP via visualization of ultra-high-speed video camera.


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 137
Author(s):  
Hirotaka Nakashima ◽  
Gen Horiuchi ◽  
Shinji Sakurai

This study aimed to determine the minimum required initial velocity to hit a fly ball toward the same field (left-field for right-handed batters), center field, and opposite field (right field for right-handed batters). Six baseball players hit fastballs launched by a pitching machine. The movements of the balls before and after bat-to-ball impact were recorded using two high-speed video cameras. The flight distance was determined using a measuring tape. Seventy-nine trials were analyzed, and the minimum required initial velocities of batted balls were quantified to hit balls 60, 70, 80, 90, 100, 110, and 120 m in each direction through regression analysis. As a result, to hit a ball 120 m, initial velocities of 43.0, 43.9, and 46.0 m/s were required for the same field, center field, and opposite field, respectively. The result provides a useful index for batters to hit a fly ball in each of the directions.


2021 ◽  
Vol 250 ◽  
pp. 01011
Author(s):  
Jorge López-Puente ◽  
Jesús Pernas-Sánchez ◽  
José Alfonso Artero-Guerrero ◽  
David Varas ◽  
Joseba Múgica ◽  
...  

The improvement of engines is one of the ways to diminish the fuel consumption in civil aircrafts, and Open Rotors engines are one of the best promises in order to achieve a sensible efficiency increment. These engines have large composite blades that could, in the event of failure, impact against the fuselage, totally or partially. In this case, composite fragments could behave as impactors. In order to design fuselages for this event and adopt these new engines in the future, it is necessary to understand the impact behaviour of a composite fragment against a deformable structure. To this end, unidirectional and woven composites fragments were impacted at high velocity (up to 150 m/s) against aluminium panels at different impact velocities. The composite fragments were made using AS4/8552 (UD) and AGP-193PW (woven) prepregs manufactured by Hexcel Composites, both using AS4 fibres and 8552 epoxy matrix. High speed video cameras were used to record the impact process and to measure both the impact and the residual velocity and hence the energy absorbed.


2016 ◽  
Vol 139 (4) ◽  
pp. 2204-2204 ◽  
Author(s):  
Bozena Kostek ◽  
Piotr Szczuko ◽  
Jozef Kotus ◽  
Maciej Szczodrak ◽  
Andrzej Czyzewski

Sign in / Sign up

Export Citation Format

Share Document