Land surface temperature retrieval from Landsat 8 TIRS: comparison between split window algorithm and SEBAL method

Author(s):  
Khalil Valizadeh Kamran ◽  
Mojtaba Pirnazar ◽  
Vida Farhadi Bansouleh
2014 ◽  
Vol 1010-1012 ◽  
pp. 1276-1279 ◽  
Author(s):  
Yin Tai Na

The three commonly used remote sensing land surface temperature retrieval methods are described, namely single-window algorithm, split window algorithm and multi-channel algorithm, which have their advantages and disadvantages. The land surface temperature (LST) of study area was retrieved with multi-source remote sensing data. LST of study area was retrieved with the split window algorithm on January 10, 2003 and November 19, 2003 which is comparatively analyzed with the LST result of ETM+data with the single-window algorithm and the LST result of ASTER data with multi channel algorithm in the same period. The results show that land surface temperature of different land features are significantly different, where the surface temperature of urban land is the highest, and that of rivers and lakes is the lowest, followed by woodland. It is concluded that the expansion of urban green space and protection of urban water can prevent or diminish the urban heat island.


2019 ◽  
Vol 11 (6) ◽  
pp. 650 ◽  
Author(s):  
Yitong Zheng ◽  
Huazhong Ren ◽  
Jinxin Guo ◽  
Darren Ghent ◽  
Kevin Tansey ◽  
...  

Land surface temperature (LST) is a crucial parameter in the interaction between the ground and the atmosphere. The Sentinel-3A Sea and Land Surface Temperature Radiometer (SLSTR) provides global daily coverage of day and night observation in the wavelength range of 0.55 to 12.0 μm. LST retrieved from SLSTR is expected to be widely used in different fields of earth surface monitoring. This study aimed to develop a split-window (SW) algorithm to estimate LST from two-channel thermal infrared (TIR) and one-channel middle infrared (MIR) images of SLSTR observation. On the basis of the conventional SW algorithm, using two TIR channels for the daytime observation, the MIR data, with a higher atmospheric transmittance and a lower sensitivity to land surface emissivity, were further used to develop a modified SW algorithm for the nighttime observation. To improve the retrieval accuracy, the algorithm coefficients were obtained in different subranges, according to the view zenith angle, column water vapor, and brightness temperature. The proposed algorithm can theoretically estimate LST with an error lower than 1 K on average. The algorithm was applied to northern China and southern UK, and the retrieved LST captured the surface features for both daytime and nighttime. Finally, ground validation was conducted over seven sites (four in the USA and three in China). Results showed that LST could be estimated with an error mostly within 1.5 to 2.5 K from the algorithm, and the error of the nighttime algorithm involved with MIR data was about 0.5 K lower than the daytime algorithm.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1778 ◽  
Author(s):  
Md Qutub Uddin Sajib ◽  
Tao Wang

The presence of two thermal bands in Landsat 8 brings the opportunity to use either one or both of these bands to retrieve Land Surface Temperature (LST). In order to compare the performances of existing algorithms, we used four methods to retrieve LST from Landsat 8 and made an intercomparison among them. Apart from the direct use of the Radiative Transfer Equation (RTE), Single-Channel Algorithm and two Split-Window Algorithms were used taking an agricultural region in Bangladesh as the study area. The LSTs retrieved in the four methods were validated in two ways: first, an indirect validation against reference LST, which was obtained in the Atmospheric and Topographic CORection (ATCOR) software module; second, cross-validation with Terra MODerate Resolution Imaging Spectroradiometer (MODIS) daily LSTs that were obtained from the Application for Extracting and Exploring Analysis Ready Samples (A ρ ρ EEARS) online tool. Due to the absence of LST-monitoring radiosounding instruments surrounding the study area, in situ LSTs were not available; hence, validation of satellite retrieved LSTs against in situ LSTs was not performed. The atmospheric parameters necessary for the RTE-based method, as well as for other methods, were calculated from the National Centers for Environmental Prediction (NCEP) database using an online atmospheric correction calculator with MODerate resolution atmospheric TRANsmission (MODTRAN) codes. Root-mean-squared-error (RMSE) against reference LST, as well as mean bias error against both reference and MODIS daily LSTs, was used to interpret the relative accuracy of LST results. All four methods were found to result in acceptable LST products, leaving atmospheric water vapor content (w) as the important determinant for the precision result. Considering a set of several Landsat 8 images of different dates, Jiménez-Muñoz et al.’s (2014) Split-Window algorithm was found to result in the lowest mean RMSE of 1.19 ° C . Du et al.’s (2015) Split-Window algorithm resulted in mean RMSE of 1.50 ° C . The RTE-based direct method and the Single-Channel algorithm provided the mean RMSE of 2.47 ° C and 4.11 ° C , respectively. For Du et al.’s algorithm, the w range of 0.0 to 6.3 g cm−2 was considered, whereas for the other three methods, w values as retrieved from the NCEP database were considered for corresponding images. Land surface emissivity was retrieved through the Normalized Difference Vegetation Index (NDVI)-threshold method. This intercomparison study provides an LST retrieval methodology for Landsat 8 that involves four algorithms. It proves that (i) better LST results can be obtained using both thermal bands of Landsat 8; (ii) the NCEP database can be used to determine atmospheric parameters using the online calculator; (iii) MODIS daily LSTs from A ρ ρ EEARS can be used efficiently in cross-validation and intercomparison of Landsat 8 LST algorithms; and (iv) when in situ LST data are not available, the ATCOR-derived LSTs can be used for indirect verification and intercomparison of Landsat 8 LST algorithms.


Sensors ◽  
2014 ◽  
Vol 14 (4) ◽  
pp. 5768-5780 ◽  
Author(s):  
Offer Rozenstein ◽  
Zhihao Qin ◽  
Yevgeny Derimian ◽  
Arnon Karnieli

2015 ◽  
Vol 7 (4) ◽  
pp. 4268-4289 ◽  
Author(s):  
Fei Wang ◽  
Zhihao Qin ◽  
Caiying Song ◽  
Lili Tu ◽  
Arnon Karnieli ◽  
...  

2015 ◽  
Vol 7 (1) ◽  
pp. 647-665 ◽  
Author(s):  
Chen Du ◽  
Huazhong Ren ◽  
Qiming Qin ◽  
Jinjie Meng ◽  
Shaohua Zhao

Sign in / Sign up

Export Citation Format

Share Document