Automated house internal geometric quality inspection using laser scanning

2015 ◽  
Author(s):  
Yuchen Wang ◽  
Zhichao Zhang ◽  
Zhouyan Qiu
2020 ◽  
Vol 12 (15) ◽  
pp. 2492
Author(s):  
Yi Tan ◽  
Silin Li ◽  
Qian Wang

Traditional quality inspection of prefabricated components is labor intensive, time-consuming, and error prone. This study developed an automated geometric quality inspection technique for prefabricated housing units using building information modeling (BIM) and light detection and ranging (LiDAR). The proposed technique collects the 3D laser scanned data of the prefabricated unit using a LiDAR which contains accurate as-built surface geometries of the prefabricated unit. On the other hand, the BIM model of the prefabricated unit contains the as-designed geometries of the unit. The scanned data and BIM model are then automatically processed to inspect the geometric quality of individual elements of the prefabricated units including both structural and mechanical elements, as well as electrical and plumbing (MEP) elements. To validate the proposed technique, experiments were conducted on two prefabricated bathroom units (PBUs). The inspection results showed that the proposed technique can provide accurate quality inspection results with 0.7 mm and 0.9 mm accuracy for structural and MEP elements, respectively. In addition, the experiments also showed that the proposed technique greatly improves the inspection efficiency regarding time and labor.


Author(s):  
A. Murtiyos ◽  
P. Grussenmeyer ◽  
D. Suwardhi ◽  
W. A. Fadilah ◽  
H. A. Permana ◽  
...  

<p><strong>Abstract.</strong> 3D recording is an important procedure in the conservation of heritage sites. This past decade, a myriad of 3D sensors has appeared in the market with different advantages and disadvantages. Most notably, the laser scanning and photogrammetry methods have become some of the most used techniques in 3D recording. The integration of these different sensors is an interesting topic, one which will be discussed in this paper. Integration is an activity to combine two or more data with different characteristics to produce a 3D model with the best results. The discussion in this study includes the process of acquisition, processing, and analysis of the geometric quality from the results of the 3D recording process; starting with the acquisition method, registration and georeferencing process, up to the integration of laser scanning and photogrammetry 3D point clouds. The final result of the integration of the two point clouds is the 3D point cloud model that has become a single entity. Some detailed parts of the object of interest draw both geometric and textural information from photogrammetry, while laser scanning provided a point cloud depicting the overall overview of the building. The object used as our case study is Sari Temple, located in Special Region of Yogyakarta, Indonesia.</p>


Author(s):  
J. Markiewicz ◽  
D. Zawieska ◽  
P. Podlasiak

This paper presents an analysis of source photogrammetric data in relation to the examination of verticality in a monumental tower. In the proposed data processing methodology, the geometric quality of the point clouds relating to the monumental tower of the castle in Iłżawas established by using terrestrial laser scanning (Z+F 5006h, Leica C10), terrestrial photographs and digital images sourced via unmanned aerial vehicles (UAV) (Leica Aibot X6 Hexacopter). Tests were performed using the original software, developed by the authors, which allows for the automation of 3D point cloud processing. The software also facilitates the verification of the verticality of the tower and the assessment of the quality of utilized data.


Author(s):  
J. S. Markiewicz ◽  
D. Zawieska

Cultural heritage is the evidence of the past; monumental objects create the important part of the cultural heritage. Selection of a method to be applied depends on many factors, which include: the objectives of inventory, the object's volume, sumptuousness of architectural design, accessibility to the object, required terms and accuracy of works. The paper presents research and experimental works, which have been performed in the course of development of architectural documentation of elements of the external facades and interiors of the Wilanów Palace Museum in Warszawa. Point clouds, acquired from terrestrial laser scanning (Z+F 5003h) and digital images taken with Nikon D3X and Hasselblad H4D cameras were used. Advantages and disadvantages of utilisation of these technologies of measurements have been analysed with consideration of the influence of the structure and reflectance of investigated monumental surfaces on the quality of generation of photogrammetric products. The geometric quality of surfaces obtained from terrestrial laser scanning data and from point clouds resulting from digital images, have been compared.


Sign in / Sign up

Export Citation Format

Share Document