Flag-based detection of weak gas signatures in long-wave infrared hyperspectral image sequences

Author(s):  
Timothy Marrinan ◽  
J. Ross Beveridge ◽  
Bruce Draper ◽  
Michael Kirby ◽  
Chris Peterson
2021 ◽  
Vol 13 (13) ◽  
pp. 2465
Author(s):  
Alper Koz ◽  
Ufuk Efe

Registration of long-wave infrared (LWIR) hyperspectral images with their thermal and emissivity components has until now received comparatively less attention with respect to the visible near and short wave infrared hyperspectral images. In this paper, the registration of LWIR hyperspectral images is investigated to enhance applications of LWIR images such as change detection, temperature and emissivity separation, and target detection. The proposed approach first searches for the best features of hyperspectral image pixels for extraction and matching in the LWIR range and then performs a global registration over two-dimensional maps of three-dimensional hyperspectral cubes. The performances of temperature and emissivity features in the thermal domain along with the average energy and principal components of spectral radiance are investigated. The global registration performed over whole 2D maps is further improved by blockwise local refinements. Among the two proposed approaches, the geometric refinement seeks the best keypoint combination in the neighborhood of each block to estimate the transformation for that block. The alternative optimization-based refinement iteratively finds the best transformation by maximizing the similarity of the reference and transformed blocks. The possible blocking artifacts due to blockwise mapping are finally eliminated by pixelwise refinement. The experiments are evaluated with respect to the (i) utilized similarity metrics in the LWIR range between transformed and reference blocks, (ii) proposed geometric- and optimization-based methods, and (iii) image pairs captured on the same and different days. The better performance of the proposed approach compared to manual, GPU-IMU-based, and state-of-the-art image registration methods is verified.


2020 ◽  
Vol 42 (4) ◽  
pp. 348-355
Author(s):  
正刚 雷 ◽  
浩 周 ◽  
春超 余 ◽  
冬 聂 ◽  
绍丽 段 ◽  
...  

Author(s):  
Andrew T. Hudak ◽  
Benjamin C. Bright ◽  
Robert L. Kremens ◽  
Matthew B. Dickinson ◽  
Matthew G. Alden

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3690
Author(s):  
Denis Dufour ◽  
Loïc Le Noc ◽  
Bruno Tremblay ◽  
Mathieu N. Tremblay ◽  
Francis Généreux ◽  
...  

This study describes the development of a prototype bi-spectral microbolometer sensor system designed explicitly for radiometric measurement and characterization of wildfire mid- and long-wave infrared radiances. The system is tested experimentally over moderate-scale experimental burns coincident with FLIR reference imagery. Statistical comparison of the fire radiative power (FRP; W) retrievals suggest that this novel system is highly reliable for use in collecting radiometric measurements of biomass burning. As such, this study provides clear experimental evidence that mid-wave infrared microbolometers are capable of collecting FRP measurements. Furthermore, given the low resource nature of this detector type, it presents a suitable option for monitoring wildfire behaviour from low resource platforms such as unmanned aerial vehicles (UAVs) or nanosats.


2020 ◽  
pp. 1-1
Author(s):  
Zhijian Shen ◽  
Zhuo Deng ◽  
Xuyi Zhao ◽  
Jian Huang ◽  
Lu Yao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document