An exact and efficient 3D reconstruction method from captured light-fields using the fractional Fourier transform

2016 ◽  
Author(s):  
Ziv Mhabary ◽  
Ofer Levi ◽  
Eran Small ◽  
Adrian Stern
2020 ◽  
Vol 5 (2) ◽  
pp. 165-174
Author(s):  
Aeshah Salem

Background: Possessions of components, described by their shape and size (S&S), are certainly attractive and has formed the foundation of the developing field of nanoscience. Methods: Here, we study the S&S reliant on electronic construction and possession of nanocrystals by semiconductors and metals to explain this feature. We formerly considered the chemical dynamics of mineral nanocrystals that are arranged according to the S&S not only for the big surface area, but also as a consequence of the considerably diverse electronic construction of the nanocrystals. Results: The S&S of models, approved by using the Fractional Fourier Transform Infrared Spectroscopy (FFTIR), indicate the construction of CdSe and ZnSe nanoparticles. Conclusion: In order to study the historical behavior of the nanomaterial in terms of S&S and estimate further results, the FFTIR was used to solve this project.


2015 ◽  
Vol 75 (2) ◽  
Author(s):  
Ho Wei Yong ◽  
Abdullah Bade ◽  
Rajesh Kumar Muniandy

Over the past thirty years, a number of researchers have investigated on 3D organ reconstruction from medical images and there are a few 3D reconstruction software available on the market. However, not many researcheshave focused on3D reconstruction of breast cancer’s tumours. Due to the method complexity, most 3D breast cancer’s tumours reconstruction were done based on MRI slices dataeven though mammogram is the current clinical practice for breast cancer screening. Therefore, this research will investigate the process of creating a method that will be able to reconstruct 3D breast cancer’s tumours from mammograms effectively.  Several steps were proposed for this research which includes data acquisition, volume reconstruction, andvolume rendering. The expected output from this research is the 3D breast cancer’s tumours model that is generated from correctly registered mammograms. The main purpose of this research is to come up with a 3D reconstruction method that can produce good breast cancer model from mammograms while using minimal computational cost.


2005 ◽  
Author(s):  
Zhaoxuan Sheng ◽  
Hongxia Wang ◽  
Junfa He ◽  
Youjie Zhou ◽  
Jun Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document