Dynamic topography of the vector beam profile at the atmospheric path output

2016 ◽  
Author(s):  
T. I. Arsenyan ◽  
A. L. Afanasiev ◽  
V. A. Banakh ◽  
O. M. Vokhnik ◽  
A. P. Rostov ◽  
...  
Geology ◽  
2000 ◽  
Vol 28 (11) ◽  
pp. 963-966 ◽  
Author(s):  
Paul Wheeler ◽  
Nicky White

Author(s):  
Mark Hoggard ◽  
Jacqueline Austermann ◽  
Cody Randel ◽  
Simon Stephenson

2019 ◽  
Vol 9 (1) ◽  
pp. 154-173
Author(s):  
I. Mintourakis ◽  
G. Panou ◽  
D. Paradissis

Abstract Precise knowledge of the oceanic Mean Dynamic Topography (MDT) is crucial for a number of geodetic applications, such as vertical datum unification and marine geoid modelling. The lack of gravity surveys over many regions of the Greek seas and the incapacity of the space borne gradiometry/gravity missions to resolve the small and medium wavelengths of the geoid led to the investigation of the oceanographic approach for computing the MDT. We compute two new regional MDT surfaces after averaging, for given epochs, the periodic gridded solutions of the Dynamic Ocean Topography (DOT) provided by two ocean circulation models. These newly developed regional MDT surfaces are compared to three state-of-theart models, which represent the oceanographic, the geodetic and the mixed oceanographic/geodetic approaches in the implementation of the MDT, respectively. Based on these comparisons, we discuss the differences between the three approaches for the case study area and we present some valuable findings regarding the computation of the regional MDT. Furthermore, in order to have an estimate of the precision of the oceanographic approach, we apply extensive evaluation tests on the ability of the two regional ocean circulation models to track the sea level variations by comparing their solutions to tide gauge records and satellite altimetry Sea Level Anomalies (SLA) data. The overall findings support the claim that, for the computation of the MDT surface due to the lack of geodetic data and to limitations of the Global Geopotential Models (GGMs) in the case study area, the oceanographic approach is preferable over the geodetic or the mixed oceano-graphic/geodetic approaches.


2020 ◽  
Author(s):  
Mohit Tyagi ◽  
P. S. Sarkar ◽  
R. S. Sengar ◽  
Ashwani Kumar ◽  
Jagannath ◽  
...  

Author(s):  
Yosuke Yuri ◽  
Nobumasa Miyawaki ◽  
Tomihiro Kamiya ◽  
Watalu Yokota ◽  
Kazuo Arakawa ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2503
Author(s):  
Kostas Amoiropoulos ◽  
Georgia Kioselaki ◽  
Nikolaos Kourkoumelis ◽  
Aris Ikiades

Using either bulk or fiber optics the profile of laser beams can be altered from Gaussian to top-hat or hollow beams allowing enhanced performance in applications like laser cooling, optical trapping, and fiber sensing. Here, we report a method based on multimode Plastic Optical Fibers (POF) long-tapers, to tweak the beam profile from near Gaussian to a hollow beam, by generating surface irregularities on the conical sections of the taper with a heat-and-pull technique. Furthermore, a cutback technique applied on long tapers expanded the output beam profile by more than twice the numerical aperture (NA) of the fiber. The enhanced sensitivity and detection efficiency of the extended profile was tested on a fiber optical ice sensor related to aviation safety.


Sign in / Sign up

Export Citation Format

Share Document