Characteristic, parametric, and diffracted transition X-ray radiation for observation of accelerated particle beam profile

Author(s):  
I. Chaikovska ◽  
R. Chehab ◽  
X. Artru ◽  
A.V. Shchagin
Keyword(s):  
2020 ◽  
Author(s):  
Mohit Tyagi ◽  
P. S. Sarkar ◽  
R. S. Sengar ◽  
Ashwani Kumar ◽  
Jagannath ◽  
...  

Author(s):  
J. Dietrich ◽  
C. Boehme ◽  
T. Weis ◽  
A.H. Botha ◽  
J.L. Conradie ◽  
...  

2015 ◽  
Vol 82 ◽  
pp. 138-145 ◽  
Author(s):  
A.D. Oliveira ◽  
M.J. Fartaria ◽  
J. Cardoso ◽  
L.M. Santos ◽  
C. Oliveira ◽  
...  

1995 ◽  
Vol 13 (2) ◽  
pp. 231-241 ◽  
Author(s):  
J.J. MacFarlane ◽  
P. Wang ◽  
J.E. Bailey ◽  
T.A. Mehlhorn ◽  
R.J. Dukart

Kα satellite spectroscopy can be a valuable technique for diagnosing conditions in high energy density plasmas. Kα emission lines are produced in intense light ion beam plasma interaction experiments as 2p electrons fill partially open Is shells created by the ion beam. In this paper, we present results from collisional-radiative equilibrium (CRE) calculations which show how Kα emission spectroscopy can be used to determine target plasma conditions in intense lithium beam experiments on Particle Beam Fusion Accelerator-II (PBFAII) at Sandia National Laboratories. In these experiments, 8–10 MeV lithium beams with intensities of 1–2 TW/cm2 irradiate planar multilayer targets containing a thin Al tracer. Kα emission spectra are measured using an X-ray crystal spectrometer with a resolution of λ/∆λ = 1200. The spectra are analyzed using a CRE model in which multilevel (NL ∼ 103) statistical equilibrium equations are solved self-consistently with the radiation field and beam properties to determine atomic level populations. Atomic level-dependent fluorescence yields and ion-impact ionization cross sections are used in computing the emission spectra. We present results showing the sensitivity of the Kα emission spectrum to temperature and density of the Al tracer. We also discuss the dependence of measured spectra on the X-ray crystal spectral resolution, and how additional diagnostic information could be obtained using multiple tracers of similar atomic number.


2016 ◽  
Vol 87 (8) ◽  
pp. 083111 ◽  
Author(s):  
Sunao Takahashi ◽  
Togo Kudo ◽  
Mutsumi Sano ◽  
Atsuo Watanabe ◽  
Hiroo Tajiri

Sign in / Sign up

Export Citation Format

Share Document