Deep SOMs for automated feature extraction and classification from big data streaming

Author(s):  
Mohamed Sakkari ◽  
Ridha Ejbali ◽  
Mourad Zaied
Author(s):  
Manbir Sandhu ◽  
Purnima, Anuradha Saini

Big data is a fast-growing technology that has the scope to mine huge amount of data to be used in various analytic applications. With large amount of data streaming in from a myriad of sources: social media, online transactions and ubiquity of smart devices, Big Data is practically garnering attention across all stakeholders from academics, banking, government, heath care, manufacturing and retail. Big Data refers to an enormous amount of data generated from disparate sources along with data analytic techniques to examine this voluminous data for predictive trends and patterns, to exploit new growth opportunities, to gain insight, to make informed decisions and optimize processes. Data-driven decision making is the essence of business establishments. The explosive growth of data is steering the business units to tap the potential of Big Data to achieve fueling growth and to achieve a cutting edge over their competitors. The overwhelming generation of data brings with it, its share of concerns. This paper discusses the concept of Big Data, its characteristics, the tools and techniques deployed by organizations to harness the power of Big Data and the daunting issues that hinder the adoption of Business Intelligence in Big Data strategies in organizations.


2020 ◽  
Author(s):  
Anusha Ampavathi ◽  
Vijaya Saradhi T

UNSTRUCTURED Big data and its approaches are generally helpful for healthcare and biomedical sectors for predicting the disease. For trivial symptoms, the difficulty is to meet the doctors at any time in the hospital. Thus, big data provides essential data regarding the diseases on the basis of the patient’s symptoms. For several medical organizations, disease prediction is important for making the best feasible health care decisions. Conversely, the conventional medical care model offers input as structured that requires more accurate and consistent prediction. This paper is planned to develop the multi-disease prediction using the improvised deep learning concept. Here, the different datasets pertain to “Diabetes, Hepatitis, lung cancer, liver tumor, heart disease, Parkinson’s disease, and Alzheimer’s disease”, from the benchmark UCI repository is gathered for conducting the experiment. The proposed model involves three phases (a) Data normalization (b) Weighted normalized feature extraction, and (c) prediction. Initially, the dataset is normalized in order to make the attribute's range at a certain level. Further, weighted feature extraction is performed, in which a weight function is multiplied with each attribute value for making large scale deviation. Here, the weight function is optimized using the combination of two meta-heuristic algorithms termed as Jaya Algorithm-based Multi-Verse Optimization algorithm (JA-MVO). The optimally extracted features are subjected to the hybrid deep learning algorithms like “Deep Belief Network (DBN) and Recurrent Neural Network (RNN)”. As a modification to hybrid deep learning architecture, the weight of both DBN and RNN is optimized using the same hybrid optimization algorithm. Further, the comparative evaluation of the proposed prediction over the existing models certifies its effectiveness through various performance measures.


1996 ◽  
Vol 35 (6) ◽  
pp. 834-840 ◽  
Author(s):  
A. Rosemary Tate ◽  
Des Watson ◽  
Stephen Eglen ◽  
Theodores N. Arvanitis ◽  
E. Louise Thomas ◽  
...  

2019 ◽  
Vol 126 ◽  
pp. 133-149 ◽  
Author(s):  
Cleverton Vicentini ◽  
Altair Santin ◽  
Eduardo Viegas ◽  
Vilmar Abreu

Sign in / Sign up

Export Citation Format

Share Document