Iteratively-seeded mode-locking for high performance ultrashort pulsed lasers (Conference Presentation)

Author(s):  
Victor Bucklew ◽  
William Renninger ◽  
Perry S. Edwards ◽  
Zhiwen Liu
Nanophotonics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1741-1751
Author(s):  
Young In Jhon ◽  
Jinho Lee ◽  
Young Min Jhon ◽  
Ju Han Lee

Abstract Metallic 2D materials can be promising saturable absorbers for ultrashort pulsed laser production in the long wavelength regime. However, preparing and manipulating their 2D structures without layer stacking have been nontrivial. Using a combined experimental and theoretical approach, we demonstrate here that a metallic titanium carbide (Ti3C2Tx), the most popular MXene 2D material, can have excellent nonlinear saturable absorption properties even in a highly stacked state due to its intrinsically existing surface termination, and thus can produce mode-locked femtosecond pulsed lasers in the 1.9-μm infrared range. Density functional theory calculations reveal that the electronic and optical properties of Ti3C2Tx MXene can be well preserved against significant layer stacking. Indeed, it is experimentally shown that 1.914-μm femtosecond pulsed lasers with a duration of 897 fs are readily generated within a fiber cavity using hundreds-of-layer stacked Ti3C2Tx MXene saturable absorbers, not only being much easier to manufacture than mono- or few-layered ones, but also offering character-conserved tightly-assembled 2D materials for advanced performance. This work strongly suggests that as-obtained highly stacked Ti3C2Tx MXenes can serve as superb material platforms for versatile nanophotonic applications, paving the way toward cost-effective, high-performance photonic devices based on MXenes.


2020 ◽  
Vol 14 (4) ◽  
pp. 552-559
Author(s):  
Shuhei Kodama ◽  
Keita Shimada ◽  
Masayoshi Mizutani ◽  
Tsunemoto Kuriyagawa ◽  
◽  
...  

Compared with traditional nanotexturing methods, an ultrashort-pulsed laser is an efficient technology of fabricating nanostructures called laser-induced periodic surface structures (LIPSS) on material surfaces. LIPSS are easily fabricated when the pulse duration is shorter than collisional relaxation time (CRT). Accordingly, ultrashort-pulsed lasers have been mainly used to study LIPSS, but they unstably irradiate while requiring high costs. Although long-pulsed lasers have low cost and high stability, the phenomena (such as the effect of pulse duration, laser wavelength, and heat) of the LIPSS fabricated using short-pulsed lasers with the pulse duration close to the maximum CRT, which is greater than femtosecond, have not been clarified. However, the nanosecond pulse laser has been reported to produce LIPSS, but those were unclear and ununiform. In this study, the short-pulsed laser with the pulse duration of 20 ps, which is close to the maximum CRT, was employed to clarify the effects of pulse duration and heat on the fabrication of LIPSS and to solve problems associated with ultrashort-pulsed lasers. First, a finite-difference time-domain simulation was developed at 20-ps pulse duration to investigate the effects of irradiation conditions on the electric-field-intensity distribution. Subsequently, experiments were conducted using the 20-ps pulse laser by varying conditions. The aspect ratio of the LIPSS obtained was greater than that of the LIPSS fabricated using ultrashort-pulsed lasers, but LIPSS were not fabricated at 355- and 266-nm laser wavelength. In addition, the short-pulsed laser experienced thermal influences and a cooling material was effective for the fabrication of LIPSS with high-aspect-ratio. This demonstrates the effects of pulse duration close to the CRT and heat on the fabrication of LIPSS.


2009 ◽  
Vol 282 (1) ◽  
pp. 88-92 ◽  
Author(s):  
Youxin Mao ◽  
Costel Flueraru ◽  
Sherif Sherif ◽  
Shoude Chang

2009 ◽  
Vol 475 (4-6) ◽  
pp. 240-244 ◽  
Author(s):  
Jiamo Guo ◽  
Tadahiro Togami ◽  
Hiroaki Benten ◽  
Hideo Ohkita ◽  
Shinzaburo Ito

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Alexander M. Merzlikin ◽  
Roman S. Puzko

Abstract Integrated ring laser gyroscopes are perfect candidates for small-sized and high-performance gyroscopes. However, the performance of the ring laser gyroscope (RLG) near zero angular velocity is fundamentally restricted by the mode locking effect. In the paper the magneto-optical ring resonator is studied as a sensitive element of the integrated RLG. The counter-propagating waves are generated at the same frequency for resonator at rest and are spatially split. It is shown that the spatial splitting of modes in such a resonator drastically suppresses the mode locking problem even at the near zero angular velocity.


2004 ◽  
Vol 69 (5) ◽  
Author(s):  
Peter Hakel ◽  
Roberto C. Mancini ◽  
Jean-Claude Gauthier ◽  
Emilio Mínguez ◽  
Jacques Dubau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document