Unmanned aerial vehicle (UAV) application to the structural health assessment of large civil engineering structures

Author(s):  
CARLO ANDREA CASTIGLIONI ◽  
ANGELO SILVIO RABUFFETTI ◽  
Gian Paolo Chiarelli ◽  
GIOVANNI BRAMBILLA ◽  
Julia Georgi
Author(s):  
Leslie Wong ◽  
Frank Courtney ◽  
Benjamin Steven Vien ◽  
Thomas Kuen ◽  
Peter Douglas ◽  
...  

Abstract Floating covers are examples of a large membrane structure used at sewage treatment plants. At the Western Treatment Plant (WTP), Werribee, Melbourne, Australia, floating covers are used in the anaerobic lagoons. They are deployed to assist with the anaerobic treatment of the raw sewage beneath, to harness the methane-rich biogas generated, and for odor control. In this respect, these floating covers are important assets for harnessing a sustainable and renewable energy source, as well as protecting the environment from the release of the damaging greenhouse methane-rich biogas from the treatment plant. Given the continuous nature of the biological process beneath the cover, the forces imposed on the floating cover will change with time. Hence, the monitoring and the assessment of the structural integrity of the floating cover are of paramount importance. These floating covers are made from high-density polyethylene (HDPE), a polymeric material. The size of these covers, the hazardous environment, and the expected life span demand a novel, remotely piloted, unmanned aerial vehicle based noncontact technique for the structural health assessment. This assessment methodology will utilize photogrammetry as the basis for determining the surface deformation of the membrane. This paper reports on an experimental study to determine the flight parameters and to assess the accuracy of the measurement technique. It was conducted over an area having similar dimensions to the large covers at the WTP. There are also features in this area, which are of similar scale to those expected in the floating cover. A total of nine test flights were used to investigate the parameters for optimal definition of the significant features to describe the deformation of the floating cover. The findings inform the selection of the unmanned aerial vehicle assisted photogrammetry parameters for optimal flight altitude, photogrammetry image overlap, and flight grid path for future integrity assessment of the floating covers. Two trial flights at WTP are also discussed to demonstrate the effectiveness of this noncontact technique for the future structural health assessment and in assisting with the operation of this large high-value asset.


2010 ◽  
Vol 2010 ◽  
pp. 1-13 ◽  
Author(s):  
M. Sun ◽  
W. J. Staszewski ◽  
R. N. Swamy

Structural Health Monitoring (SHM) aims to develop automated systems for the continuous monitoring, inspection, and damage detection of structures with minimum labour involvement. The first step to set up a SHM system is to incorporate a level of structural sensing capability that is reliable and possesses long term stability. Smart sensing technologies including the applications of fibre optic sensors, piezoelectric sensors, magnetostrictive sensors and self-diagnosing fibre reinforced composites, possess very important capabilities of monitoring various physical or chemical parameters related to the health and therefore, durable service life of structures. In particular, piezoelectric sensors and magnetorestrictive sensors can serve as both sensors and actuators, which make SHM to be an active monitoring system. Thus, smart sensing technologies are now currently available, and can be utilized to the SHM of civil engineering structures. In this paper, the application of smart materials/sensors for the SHM of civil engineering structures is critically reviewed. The major focus is on the evaluations of laboratory and field studies of smart materials/sensors in civil engineering structures.


Sign in / Sign up

Export Citation Format

Share Document