Structural Assessment of Large Membrane Structures Using an Unmanned Aerial Vehicle Aided Photogrammetry: Determination of Flight Parameters and Trials at the Western Treatment Plant

Author(s):  
Leslie Wong ◽  
Frank Courtney ◽  
Benjamin Steven Vien ◽  
Thomas Kuen ◽  
Peter Douglas ◽  
...  

Abstract Floating covers are examples of a large membrane structure used at sewage treatment plants. At the Western Treatment Plant (WTP), Werribee, Melbourne, Australia, floating covers are used in the anaerobic lagoons. They are deployed to assist with the anaerobic treatment of the raw sewage beneath, to harness the methane-rich biogas generated, and for odor control. In this respect, these floating covers are important assets for harnessing a sustainable and renewable energy source, as well as protecting the environment from the release of the damaging greenhouse methane-rich biogas from the treatment plant. Given the continuous nature of the biological process beneath the cover, the forces imposed on the floating cover will change with time. Hence, the monitoring and the assessment of the structural integrity of the floating cover are of paramount importance. These floating covers are made from high-density polyethylene (HDPE), a polymeric material. The size of these covers, the hazardous environment, and the expected life span demand a novel, remotely piloted, unmanned aerial vehicle based noncontact technique for the structural health assessment. This assessment methodology will utilize photogrammetry as the basis for determining the surface deformation of the membrane. This paper reports on an experimental study to determine the flight parameters and to assess the accuracy of the measurement technique. It was conducted over an area having similar dimensions to the large covers at the WTP. There are also features in this area, which are of similar scale to those expected in the floating cover. A total of nine test flights were used to investigate the parameters for optimal definition of the significant features to describe the deformation of the floating cover. The findings inform the selection of the unmanned aerial vehicle assisted photogrammetry parameters for optimal flight altitude, photogrammetry image overlap, and flight grid path for future integrity assessment of the floating covers. Two trial flights at WTP are also discussed to demonstrate the effectiveness of this noncontact technique for the future structural health assessment and in assisting with the operation of this large high-value asset.

2020 ◽  
Vol 12 (17) ◽  
pp. 2738
Author(s):  
Benjamin Steven Vien ◽  
Leslie Wong ◽  
Thomas Kuen ◽  
Frank Courtney ◽  
Jayantha Kodikara ◽  
...  

Large structures and high-value assets require inspection and integrity assessment methodologies that ensure maximum availability and operational capabilities. Large membranes are used as floating covers at the anaerobic wastewater lagoons of Melbourne Water’s Western Treatment Plant (WTP). A critical function of this high-value asset pertains to the harnessing of the biogas gas generated at these lagoons as well as protecting the environment from the release of odours and greenhouse gases. Therefore, a proactive inspection and efficient management strategy are required to ensure these expensive covers’ integrity and continued operation. Not only is identifying the state of stress on the floating cover crucial for its structural integrity assessment, but the development of rapid and non-contact inspections will significantly assist in determining the “real-life” performance of the cover for superior maintenance management. This study investigates a strain determination method for WTP floating cover which integrates unmanned aerial vehicle (UAV)-assisted photogrammetry with finite element analyses to determine the structural integrity of these covers. Collective aerial images were compiled to form 3D digital models of the deformed cover specimens, which were then employed in computational and statistical analyses to assess and predict the strain of the cover. The findings complement the future implementation of UAV-assisted aerial photogrammetry for structural health assessment of the large floating covers.


2020 ◽  
Vol 12 (7) ◽  
pp. 1118 ◽  
Author(s):  
Leslie Wong ◽  
Benjamin Steven Vien ◽  
Yue Ma ◽  
Thomas Kuen ◽  
Frank Courtney ◽  
...  

High-density polyethylene (HDPE) is commonly the material of choice for covered anaerobic lagoons (CAL) at wastewater treatment plants. The membrane floats on the wastewater, and hence is called a “floating cover”, and is used for odour control and to harvest the methane-rich biogas as a renewable resource to generate electricity. The floating cover is an expensive and high-value asset that demands an efficient methodology for the determination of a set of engineering quantities for structural integrity assessment. Given the dynamics of the anaerobic activities under the floating cover, the state of deformation of the floating cover is an engineering measurand that is useful for its structural health assessment. A non-contact measurement strategy is preferred as it offers practical and safety-related benefits over other methods. In collaboration with Melbourne Water Corporation (MWC), an unmanned aerial vehicle (UAV) assisted photogrammetry approach was developed to address this need. Following the definition of the appropriate flight parameters required to quantify the state of deformation of the cover, a series of periodic flights were operated over the very large floating covers at MWC’s Western Treatment Plant (WTP) at Werribee, Victoria, Australia. This paper aims to demonstrate the effectiveness and practicality of this inspection technique to determine the state of deformation of the floating covers measured over a ten-month period.


2017 ◽  
Vol 199 ◽  
pp. 2214-2219
Author(s):  
J.J. Olivera López ◽  
L. Vergara Reyes ◽  
C. Oyarzo Vera

Sign in / Sign up

Export Citation Format

Share Document