Multimodal in vivo blood flow sensing combining particle image velocimetry and optical tweezers-based blood steering

Author(s):  
Robert Meissner ◽  
Wade W. Sugden ◽  
Arndt F. Siekmann ◽  
Cornelia Denz
2011 ◽  
Vol 37 (3) ◽  
pp. 450-464 ◽  
Author(s):  
Fuxing Zhang ◽  
Craig Lanning ◽  
Luciano Mazzaro ◽  
Alex J. Barker ◽  
Phillip E. Gates ◽  
...  

Author(s):  
Nathalie Ne`ve ◽  
James K. Lingwood ◽  
Shelley R. Winn ◽  
Derek C. Tretheway ◽  
Sean S. Kohles

Interfacing a novel micron-resolution particle image velocimetry and dual optical tweezers system (μPIVOT) with microfluidics facilitates the exposure of an individual biologic cell to a wide range of static and dynamic mechanical stress conditions. Single cells can be manipulated in a sequence of mechanical stresses (hydrostatic pressure variations, tension or compression, as well as shear and extensional fluid induced stresses) while measuring cellular deformation. The unique multimodal load states enable a new realm of single cell biomechanical studies.


Author(s):  
Andrew M. Walker ◽  
Clifton R. Johnston ◽  
Gary M. Dobson

Currently, an echo particle image velocimetry (ePIV) system for the investigation of in vivo blood flow and shear stress is under development at the University of Calgary. To date, encouraging preliminary results have been obtained when comparing ePIV derived velocities to analytical solutions. However, large discrepancies were noted between our steady state ePIV derived velocities and velocities measured using pulse wave Doppler (PWD). Ultrasound beam thickness, off axis centerline measurements and PWD angle of interrogation likely account for the differences observed.


Author(s):  
Arend F. L. Schinkel ◽  
Sakir Akin ◽  
Mihai Strachinaru ◽  
Rahatullah Muslem ◽  
Dan Bowen ◽  
...  

Abstract Purpose Poor left ventricular (LV) function may affect the physiological intraventricular blood flow and physiological vortex formation. The aim of this study was to investigate the pattern of intraventricular blood flow dynamics in patients with LV assist devices (LVADs) using echocardiographic particle image velocimetry. Materials and methods This prospective study included 17 patients (mean age 57 ± 11 years, 82% male) who had received an LVAD (HeartMate 3, Abbott Laboratories, Chicago, Illinois, USA) because of end-stage heart failure and poor LV function. Eleven (64%) patients had ischemic cardiomyopathy, and six patients (36%) had nonischemic cardiomyopathy. All patients underwent echocardiography, including intravenous administration of an ultrasound-enhancing agent (SonoVue, Bracco, Milan, Italy). Echocardiographic particle image velocimetry was used to quantify LV blood flow dynamics, including vortex formation (Hyperflow software, Tomtec imaging systems Gmbh, Unterschleissheim, Germany). Results Contrast-enhanced ultrasound was well tolerated in all patients and was performed without adverse reactions or side effects. The LVAD function parameters did not change during or after the ultrasound examination. The LVAD flow was on average 4.3 ± 0.3 L/min, and the speed was 5247 ± 109 rotations/min. The quantification of LV intraventricular flow demonstrated substantial impairment of vortex parameters. The energy dissipation, vorticity, and kinetic energy fluctuation indices were severely impaired. Conclusions Echo particle velocimetry is safe and feasible for the quantitative assessment of intraventricular flow in patients with an LVAD. The intraventricular LV flow and vortex parameters are severely impaired in these patients.


Sign in / Sign up

Export Citation Format

Share Document