Deep learning angiography (DLA): three-dimensional C-arm cone beam CT angiography generated from deep learning method using a convolutional neural network

Author(s):  
Juan Montoya ◽  
Yinsheng Li ◽  
Charles Strother ◽  
Guang-Hong Chen
Author(s):  
Branimir Rusanov ◽  
Martin Andrew Ebert ◽  
Godfrey Mukwada ◽  
Ghulam Mubashar Hassan ◽  
Mahsheed Sabet

Author(s):  
Uzma Batool ◽  
Mohd Ibrahim Shapiai ◽  
Nordinah Ismail ◽  
Hilman Fauzi ◽  
Syahrizal Salleh

Silicon wafer defect data collected from fabrication facilities is intrinsically imbalanced because of the variable frequencies of defect types. Frequently occurring types will have more influence on the classification predictions if a model gets trained on such skewed data. A fair classifier for such imbalanced data requires a mechanism to deal with type imbalance in order to avoid biased results. This study has proposed a convolutional neural network for wafer map defect classification, employing oversampling as an imbalance addressing technique. To have an equal participation of all classes in the classifier’s training, data augmentation has been employed, generating more samples in minor classes. The proposed deep learning method has been evaluated on a real wafer map defect dataset and its classification results on the test set returned a 97.91% accuracy. The results were compared with another deep learning based auto-encoder model demonstrating the proposed method, a potential approach for silicon wafer defect classification that needs to be investigated further for its robustness.


2020 ◽  
Vol 32 ◽  
pp. 03011
Author(s):  
Divya Kapil ◽  
Aishwarya Kamtam ◽  
Akhil Kedare ◽  
Smita Bharne

Surveillance systems are used for the monitoring the activities directly or indirectly. Most of the surveillance system uses the face recognition techniques to monitor the activities. This system builds the automated contemporary biometric surveillance system based on deep learning. The application of the system can be used in various ways. The face prints of the persons will be stored inside the database with relevant statistics and does the face recognition. When any unknown face is recognized then alarm will ring so one can alert the security systems and in addition actions will be taken. The system learns changes while detecting faces automatically using deep learning and gain correct accuracy in face recognition. A deep learning method including Convolutional Neural Network (CNN) is having great significance in the area of image processing. This system can be applicable to monitor the activities for the housing society premises.


2020 ◽  
Vol 205 ◽  
pp. 03007
Author(s):  
Yejin Kim ◽  
Seong Jun Ha ◽  
Tae sup Yun

Hydraulic stimulation has been a key technique in enhanced geothermal systems (EGS) and the recovery of unconventional hydrocarbon resources to artificially generate fractures in a rock formation. Previous experimental studies present that the pattern and aperture of generated fractures vary as the fracking pressure propagation. The recent development of three-dimensional X-ray computed tomography allows visualizing the fractures for further analysing the morphological features of fractures. However, the generated fracture consists of a few pixels (e.g., 1-3 pixels) so that the accurate and quantitative extract of micro-fracture is highly challenging. Also, the high-frequency noise around the fracture and the weak contrast across the fracture makes the application of conventional segmentation methods limited. In this study, we adopted an encoder-decoder network with a convolutional neural network (CNN) based on deep learning method for the fast and precise detection of micro-fractures. The conventional image processing methods fail to extract the continuous fractures and overestimate the fracture thickness and aperture values while the CNN-based approach successfully detects the barely seen fractures. The reconstruction of the 3D fracture surface and quantitative roughness analysis of fracture surfaces extracted by different methods enables comparison of sensitivity (or robustness) to noise between each method.


2019 ◽  
Vol 46 (11) ◽  
pp. 5027-5035 ◽  
Author(s):  
Jordi Minnema ◽  
Maureen Eijnatten ◽  
Allard A. Hendriksen ◽  
Niels Liberton ◽  
Daniël M. Pelt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document