enhanced geothermal systems
Recently Published Documents


TOTAL DOCUMENTS

279
(FIVE YEARS 106)

H-INDEX

31
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Chengjun Feng ◽  
Guangliang Gao ◽  
Shihuai Zhang ◽  
Dongsheng Sun ◽  
Siyu Zhu ◽  
...  

Abstract. The Tangshan region is one of the most seismically active areas in the North China, and the 1976 M 7.8 earthquake occurred on July 28th near the Tangshan fault zone. The Matouying Enhanced Geothermal Systems (EGS) field is located ~90 km away from Tangshan City. Since the late 2020, preliminary hydraulic stimulation tests have been conducted at depths of ~3965–4000 m. Fluid injection into geothermal reservoir facilitates heat exchanger system. However, fluid injection may also induce earthquakes. In anticipation of the EGS operation at the Matouying uplift, it is essential to assess how the fault slip potential of the nearby active and quiescent faults will change in the presence of fluid injection. In this study, we first characterize the ambient stress field in the Tangshan region by performing stress tensor inversions using 98 focal mechanism data (ML ≥ 2.5). Then, we estimate the principal stress magnitudes near the Matouying EGS field by analyzing in situ stress measurements at shallow depths (~600–1000 m). According to these data, we perform a quantitative risk assessment using the Mohr-Coulomb framework in order to evaluate how the main active faults might respond to hypothetical injected-related pore pressure increases due to the upcoming EGS production. Our results mainly show that most earthquakes in the Tangshan seismic region have occurred on the faults that have relatively high fault slip potential in the present ambient stress field. At well distances of less than 15 km, the probabilistic fault slip potential on most of the boundary faults increase with continuing fluid injection over time, especially on these faults with well distances of ~6–10 km. The probabilistic fault slip potential increases linearly with the fluid injection rate. However, the FSP values decrease exponentially with increased unit permeability. The case study of the Matouying EGS field has important implications for the deep geothermal exploitation in China, especially for Gonghe EGS (in Qinghai province) and Xiong’an New Area (in Hebei province) geothermal reservoirs that are close to the Quaternary active faults. Ongoing injection operations in the regions should be conducted with these understandings in mind.


2021 ◽  
Vol 95 (6) ◽  
pp. 1882-1891
Author(s):  
Yanlong KONG ◽  
Sheng PAN ◽  
Yaqian REN ◽  
Weizun ZHANG ◽  
Ke WANG ◽  
...  

Geothermics ◽  
2021 ◽  
Vol 97 ◽  
pp. 102254
Author(s):  
Hui Wu ◽  
Pengcheng Fu ◽  
Zachary Frone ◽  
Mark D. White ◽  
Jonathan B. Ajo-Franklin ◽  
...  

SPE Journal ◽  
2021 ◽  
pp. 1-14
Author(s):  
M. Jammoul ◽  
M. F. Wheeler

Summary Modeling the geomechanical deformations of fracture networks has become an integral part of designing enhanced geothermal systems and recovery mechanisms for unconventional reservoirs. Stress changes in the reservoir can cause variations in the apertures of fractures resulting in large changes in their transmissivities. At the same time, sustained high-injection pressures can induce shear slipping along existing fractures and faults and trigger seismic activity. In this work, we extend the phase-field method to solve for flow and geomechanical deformations in naturally fractured reservoirs. The framework can predict the opening/closure of fractures as well as their shear slipping because of induced stresses and poromechanical effects. The flow through fractures is modeled on spatially nonconforming grids using the enhanced velocity mixed finite element method. The geomechanics equations are discretized using the continuous Galerkin (CG) finite element method. The flow and mechanics equations are decoupled using the fixed stress iterative scheme. The implementation is validated against the analytical solutions of Mandel’s problem and Sneddon’s benchmark test. Two synthetic examples are presented to illustrate the impact of poroelastic deformations and the accompanying dynamic behavior of fractures on the safety and productivity of subsurface projects. NOTE: This paper is published as part of the 2021 Reservoir Simulation Conference Special Issue.


2021 ◽  
Vol 11 (2) ◽  
pp. 333-346
Author(s):  
Anirbid Sircar ◽  
Krishna Solanki ◽  
Namrata Bist ◽  
Kriti Yadav

Geothermal energy plays a very important role in the energy basket of the world. However, understanding the geothermal hotspots and exploiting the same from deep reservoirs, by using advanced drilling technologies, is a key challenge. This study focuses on reservoirs at a depth greater than 3 km and temperatures more than 150°C. These resources are qualified as Enhanced Geothermal System (EGS). Artificially induced technologies are employed to enhance the reservoir permeability and fluid saturation. The present study concentrates on EGS resources, their types, technologies employed to extract energy and their applications in improving power generation. Studies on fracture stimulation using hydraulic fracturing and hydro shearing are also evaluated. The associated micro-seismic events and control measures for the same are discussed in this study. Various simulators for reservoir characterization and description are also analyzed and presented. Controlled fluid injection and super critical CO2 as heat transmission fluid are described for the benefit of the readers. The advantages of using CO2 over water and its role in reducing the carbon footprint are brought out in this paper for further studies.


2021 ◽  
Vol 13 (22) ◽  
pp. 12481
Author(s):  
Jiwen Cen ◽  
Feng Li ◽  
Tingliang Li ◽  
Wenbo Huang ◽  
Juanwen Chen ◽  
...  

The installation and operation of enhanced geothermal systems (EGS) involves many challenges. These challenges include the high cost and high risk associated with the investment capital, potential large working-fluid leakage, corrosion of equipment, and subsiding land. A super-long heat pipe can be used for geothermal exploitation to avoid these problems. In this paper, a high aspect-ratio heat pipe (30 m long, 17 mm in inner diameter) is installed vertically. Experiments are then carried out to study its heat-transfer performance and characteristics using several filling ratios of deionized water, different heating powers, and various cooling-water flowrates. The results show that the optimal filling-ratio is about 40% of the volume of the vaporizing section of the heat pipe. Compared with a conventional short heat pipe, the extra-long heat pipe experiences significant thermal vibration. The oscillation frequency depends on the heating power and working-fluid filling ratio. With increasing cooling-water flow rate, the heat-transfer rate of the heat pipe increases before it reaches a plateau. In addition, we investigate the heat-transfer performance of the heat pipe for an extreme working-fluid filling ratio; the results indicate that the lower part of the heat pipe is filled with vapor, which reduces the heat-transfer to the top part. Based on the experimental data, guidelines for designing a heat pipe that can be really used for the exploitation of earth-deep geothermal energy are analyzed.


Sign in / Sign up

Export Citation Format

Share Document