Convolutional neural network for road extraction

Author(s):  
Baoyu Xiong ◽  
Junping Li ◽  
Yazhou Ding ◽  
Fajie Feng ◽  
Weihong Cui
2018 ◽  
Vol 10 (9) ◽  
pp. 1461 ◽  
Author(s):  
Yongyang Xu ◽  
Zhong Xie ◽  
Yaxing Feng ◽  
Zhanlong Chen

The road network plays an important role in the modern traffic system; as development occurs, the road structure changes frequently. Owing to the advancements in the field of high-resolution remote sensing, and the success of semantic segmentation success using deep learning in computer version, extracting the road network from high-resolution remote sensing imagery is becoming increasingly popular, and has become a new tool to update the geospatial database. Considering that the training dataset of the deep convolutional neural network will be clipped to a fixed size, which lead to the roads run through each sample, and that different kinds of road types have different widths, this work provides a segmentation model that was designed based on densely connected convolutional networks (DenseNet) and introduces the local and global attention units. The aim of this work is to propose a novel road extraction method that can efficiently extract the road network from remote sensing imagery with local and global information. A dataset from Google Earth was used to validate the method, and experiments showed that the proposed deep convolutional neural network can extract the road network accurately and effectively. This method also achieves a harmonic mean of precision and recall higher than other machine learning and deep learning methods.


2019 ◽  
Vol 11 (5) ◽  
pp. 552 ◽  
Author(s):  
Lin Gao ◽  
Weidong Song ◽  
Jiguang Dai ◽  
Yang Chen

Road extraction is one of the most significant tasks for modern transportation systems. This task is normally difficult due to complex backgrounds such as rural roads that have heterogeneous appearances with large intraclass and low interclass variations and urban roads that are covered by vehicles, pedestrians and the shadows of surrounding trees or buildings. In this paper, we propose a novel method for extracting roads from optical satellite images using a refined deep residual convolutional neural network (RDRCNN) with a postprocessing stage. RDRCNN consists of a residual connected unit (RCU) and a dilated perception unit (DPU). The RDRCNN structure is symmetric to generate the outputs of the same size. A math morphology and a tensor voting algorithm are used to improve RDRCNN performance during postprocessing. Experiments are conducted on two datasets of high-resolution images to demonstrate the performance of the proposed network architectures, and the results of the proposed architectures are compared with those of other network architectures. The results demonstrate the effective performance of the proposed method for extracting roads from a complex scene.


2019 ◽  
Vol 52 (1) ◽  
pp. 572-582 ◽  
Author(s):  
Qianqian Zhang ◽  
Qingling Kong ◽  
Chao Zhang ◽  
Shucheng You ◽  
Hai Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document