Artifact reduction in simultaneous tomosynthesis and mechanical imaging of the breast

Author(s):  
Predrag R. Bakic ◽  
Magnus Dustler ◽  
Daniel Förnvik ◽  
Pontus Timberg ◽  
Susan Ng ◽  
...  
2018 ◽  
Author(s):  
Benedikt Schwaiger ◽  
Alexandra Gersing ◽  
Daniela Muenzel ◽  
Julia Dangelmaier ◽  
Peter Prodinger ◽  
...  

2019 ◽  
Vol 100 (5) ◽  
pp. 269-277 ◽  
Author(s):  
J. Greffier ◽  
A. Larbi ◽  
J. Frandon ◽  
P.A. Daviau ◽  
J.P. Beregi ◽  
...  

2021 ◽  
pp. 028418512110290
Author(s):  
Georg Osterhoff ◽  
Florian A Huber ◽  
Laura C Graf ◽  
Ferdinand Erdlen ◽  
Hans-Christoph Pape ◽  
...  

Background Carbon-reinforced PEEK (C-FRP) implants are non-magnetic and have increasingly been used for the fixation of spinal instabilities. Purpose To compare the effect of different metal artifact reduction (MAR) techniques in magnetic resonance imaging (MRI) on titanium and C-FRP spinal implants. Material and Methods Rod-pedicle screw constructs were mounted on ovine cadaver spine specimens and instrumented with either eight titanium pedicle screws or pedicle screws made of C-FRP and marked with an ultrathin titanium shell. MR scans were performed of each configuration on a 3-T scanner. MR sequences included transaxial conventional T1-weighted turbo spin echo (TSE) sequences, T2-weighted TSE, and short-tau inversion recovery (STIR) sequences and two different MAR-techniques: high-bandwidth (HB) and view-angle-tilting (VAT) with slice encoding for metal artifact correction (SEMAC). Metal artifact degree was assessed by qualitative and quantitative measures. Results There was a much stronger effect on artifact reduction with using C-FRP implants compared to using specific MRI MAR-techniques (screw shank: P < 0.001; screw tulip: P < 0.001; rod: P < 0.001). VAT-SEMAC sequences were able to reduce screw-related signal loss artifacts in constructs with titanium screws to a certain degree. Constructs with C-FRP screws showed less artifact-related implant diameter amplification when compared to constructs with titanium screws ( P < 0.001). Conclusion Constructs with C-FRP screws are associated with significantly less artifacts compared to constructs with titanium screws including dedicated MAR techniques. Artifact-reducing sequences are able to reduce implant-related artifacts. This effect is stronger in constructs with titanium screws than in constructs with C-FRP screws.


2021 ◽  
Vol 24 ◽  
pp. 100573
Author(s):  
Goli Khaleghi ◽  
Mohammad Hosntalab ◽  
Mahdi Sadeghi ◽  
Reza Reiazi ◽  
Seied Rabi Mahdavi

2021 ◽  
Vol 13 (3) ◽  
pp. 409
Author(s):  
Howard Zebker

Atmospheric propagational phase variations are the dominant source of error for InSAR (interferometric synthetic aperture radar) time series analysis, generally exceeding uncertainties from poor signal to noise ratio or signal correlation. The spatial properties of these errors have been well studied, but, to date, their temporal dependence and correction have received much less attention. Here, we present an evaluation of the magnitude of tropospheric artifacts in derived time series after compensation using an algorithm that requires only the InSAR data. The level of artifact reduction equals or exceeds that from many weather model-based methods, while avoiding the need to globally access fine-scale atmosphere parameters at all times. Our method consists of identifying all points in an InSAR stack with consistently high correlation and computing, and then removing, a fit of the phase at each of these points with respect to elevation. A comparison with GPS truth yields a reduction of three, from a rms misfit of 5–6 to ~2 cm over time. This algorithm can be readily incorporated into InSAR processing flows without the need for outside information.


Sign in / Sign up

Export Citation Format

Share Document